All rights reserved. All parts of the documentatiare covered by copyright. Without explicit
consent in writing from the copyright owner, itriet allowed to copy the documentation or parts
thereof in any form, by photocopy or any other pgscor means, or to distribute them.

Copyright © 1991-2015 Klaus Schultz Reverse- & Gudtware-Engineering,
D 87437 Kempten, Germany

reASM version 2.5.1 / reASMgen version 1.5.7 1

Contents

1. PREFACE

2. FIRST STEPS WITH REASM
2.1 Thedemo version

2.2 Ingtallation and running
2.2.1Installing the demo version
2.2.2Installing the production version
2.2.3Uninstalling
2.2.4Running the program
2.2.5reASMgen

2.3 Displaying the assembly source

2.4 Displaying control flow

3. OPERATING PRINCIPLES OF THE REASM USER INTERFACE

3.1 Menu
3.2 Function keys

3.3 Shortcut keys

4. THE CONTROL FLOW MENU
4.1 Displaying pseudocode
4.2 Cursor and select
4.3 Flow

4.4 Call hierarchy

5. THE DATA MENU
5.1 Display
5.2 Zoom
5.3 Select
5.4 Data/ Input, Output, Usage
5.4.10utput
5.4.2Input
5.4.3Usage
5.4.4Method of operation
5.5 Data/ Extended Output Backward
5.6 Extended Usage Forward

5.7 Parameter input with Extended Usage

reASM version 2.5.1 / reASMgen version 1.5.7

© O © © 0 ~

©

10

12
12
12

12

13
13
13
14

14

15
15
15
15
15
16
16
16
16
18
19

21

5.8 Data/ Reg free 21

5.9 Data/ Assignment Xref of... 22
5.10 Data / Condition Xref of... 22
5.11 Prompt window: Select Data by Name 23
5.12 Displaying the number of statementsfound 23
6. THE OPTIONS MENU 25
6.1 Options/ Autoscroll 25
6.2 Options/ Font 25
6.3 Options/ forward & backward 25
6.4 Options/ one-choice 25
6.5 Options/ Text PLH- & ASM-like 27
7. THE FILE MENU 28
7.1 Processing an assembly program 28
7.2 File/ Source View 29
7.3 File/ Open and Save Work 29
7.4 File/ Print 29
7.5 File/ MergePrint 29
7.6 File/ Stop Task 29
8. THE NAVIGATE MENU 30
8.1 Navigate/ GOTO Label... 30
8.2 Navigate/ GOTO Line... 30
8.3 Navigate/ End-Results & User Defined Results 30
8.4 Copy / Merge User Defined Results 32
8.5 Navigate/ Clear Selections 32
8.6 Navigate/ Keep List 32
8.7 Navigate / Choice points 33
8.8 Navigate/ Excludelines 33
9. CONCEPTS 35
9.1 Computed branch targets 35

reASM version 2.5.1 / reASMgen version 1.5.7 3

9.2 Procedures 36

9.3 Explicitly-addressed data 37
9.4 Redefined and variable-length data 37
9.5 Dynamic code modifications 38
9.6 SECTIONSs 38
9.7 USING 38
9.8EQU 38
10. DESCRIPTION OF SUPPLIED AND GENERATED FILES 39
10.1 REASM .ENV: ENVIRONMENT file 39
10.2 REASM..INI 39
10.3XYZ.IDB and XY Z.IDC: Internal database 39
10.4 XY Z.PRO: Company and program profiles 39
10.4.10ptions forreASM 40
10.4.20ptions forreASMgen 40
10.5 STMACRO.ARI and MACRO.ARI: Macro definitions 41
10.6 XYZ.ASM, XYZ.LST: Assembler source, assembler listing 42
10.7 XY Z.REF: Referencefile 42
10.8 XYZ.LOG: Logfile 43
10.9 XYZ.DBR: Import databaserecord 44
10.10 REPORT.ARI 45
10.11 REASM .HLP 45
10.12 XYZ.LRE: Ligt file 45
10.13 XYZ.RLH: Restruct file 45
10.14 XYZ.TMP: Temporary file 45
10.15 PROL OG filesnotation (*.ARI , *.PRO and *.REF) 46
11. APPENDIX 47
11.1 Storage requirements and performance 47
11.2 Assembly-language subset 47
11.3 Error messages 51
12. OPTIONAL RESTRUCTURING MODULE 53

reASM version 2.5.1 / reASMgen version 1.5.7 4

13. USER INTERFACE EXTENSIONS FOR REASMGEN
13.1 Data declaration hierarchy
13.2 Gener ate statement(s)

13.3 Restructuring

14. INDEX

reASM version 2.5.1 / reASMgen version 1.5.7

56
56
56

57

58

1. Preface

For what programmers has this tool been designed?

It is not meant for those programmers who know “their” pemgs like the back of their hand, or
those who believe they saka glance what to do. It is meant for those programmers what to
work systematically, who take some time to anatiiseassembler code in order to see what to do.

Also, it is a help for those programmers who hattke lexperience with assembly language but
want to extract information from programs.

For what programs has the tool been designed?

It has not been made for programs that use thaeadeatures of assembly language, such as those
that operate at near-machine level, or SAP progrénesvers an assembly language subset that is
usual in commercial programming — much like whatBGD uses (for a more accurate description
refer to the Appendix).

It has been designed to suppawinmon tasks. Special problems are still covered best by human
experts. WithreASM they will regain time to handle these special fgots.

ThereASM product offers maintenance support: program floah data flow analysis.

In addition to this, there is a program caltedn\SMgen, which analyses the assembly program to
such a depth that a semi-automatic conversion aihan language (PL/I or COBOL) will be
possible.

The demo version, which is available on floppy distntains the complete program, but without
the possibility to load assembly programs. Insteadhis, the program’s database file can be
restored, so that you can try out all features.

reASM version 2.5.1 / reASMgen version 1.5.7 6

2. First steps with reASM

2.1 The demo version

Put the floppy disk into the drive and run fromrth&INSTALL C:” (or “INSTALL D:” if you
want to install on the D partition). All files withen be copied to directory C:\REASM\, and data
files to directory C\REASM\DATA.

Verify that the DLL files that are supplied are alsistalled. E.g. under OS/2 be sure that the
current directory is included in your LIBPATH anduystart the program from directory REASM.

Switch to directory REASM. Before the program itsil launched, we’ll have a look at file
UMSATZ.LOG, which resides in subdirectory DATA. UM3Z.LOG is theprocessing log for
the program UMSATZ.ASM. The branch nesting leved isvith 10 branch labels. At one point, a
NOPinstruction will be changed at runtime. Two placethe program contain “dead code”.

These numbers are also contained in database réddSATZ.DBR, with which a history
database of the assembly program quality can beupui

Now switch back to directory REASM and launch tihegpam by entering “REASM”.
L oading the example:

With “Open” the file selection window is opened.directory DATA, select file UMSATZ.IDB.
This is the database file of the sample program BIVIS; it is supplied withreASM.

The assembly source code which appears on thenscae only be read, not edited. Tduesor is

a reversed-video bar, which can be positioned witinouse click. Operation is object-oriented:
when the cursor is in the left part of the ling. @n the “MVC” of anMVCinstruction, a command
will apply to the entire instruction; when the aurss more to the right, on an operand name, the
command will apply to this operand.

Display: With a mouse click, position the cursor at the "Bi line 15 and type CTRL + D
(display) on the keyboard: you will see the pseudocodd@fstatement. However, if you position
the cursor on an operand, e.g. on “MASKE” in lirrg @nd then type CTRL + D, the local and
global definition of the operand will be displayed.

Data flow: Place the cursor on a data item, e.g. on field QWK in line 36, and type CTRL + S
(select). This selects a data item (green background) wiilch you can start a data flow search:
where has ZWISUMK been set? To answer this questigge CTRL + O @utput). After the
search, you will find in the top-right corner ini@’ that two points have been found. You can find
these points in two ways: by browsing (the poimsnid are displayed in red), or via the menu
under “Navigate / End results”. In this case thangsofound are:

1.line 8 ZAP ZWISUMK,=P'0’
2.line95 ZAP ZWISUMK,UMSPK

The path searched to the results is displayed yellaw background. When you find this result
manually, you will see thateASM has gone back to label EOF1, from there to the GET
instruction, from there back to label SCHLEIFE. fiarthis point, the path branches: one branch to
the start of the program, the other one in thectima to the start of the branch in line 32, arair
there back into procedure RUMPF-.

In the menu item “Options” you can set the dirattin which the data flow is to be analysed.
Default is backward. That is the usual directiorewlsearching for output: where has a data item
most recently been set? When searching for InptiR(C+ | = input), the forward direction is
usually chosen: where has the field been usedpas io a statement?

reASM version 2.5.1 / reASMgen version 1.5.7 7

An example of input: Switch to forward search biglkdihg on menu item “backward”. The menu
item text now changes to “forward”. Position thesar at line 6, e.g. by means of the menu item
“Navigate / GOTO Line...”, and select register 3nmCTRL + S in line 6 (this removes previous
selections). Type CTRL + teASM searches forward, enters into procedures whermessary and
finds exactly two statements: 154 and 115. So ywutiace how a variable’s value propagates.

Backward data flow analysis is also available muti-level form. In line 48, variable ENDSUM
is placed into a print string. But how did ENDSUMtdts value? Select ENDSUM and select
menu item “Data / Extended Output backward”. Yoll we asked how many levels deep you
want to search. Enter e.g. “3”, The result is:

W] End Results searching extended backward for ENDSUM &
3 48 ED DEER+42(12), ENDSUM
= 9 AP ENDSUM, THSFE
L] 5 UHSATZ CSECT
L] el AP ENDSUHM, THSFPE
— 93 PACK THSFPE, UHMS
> 10 GET. ..
4] |
| Goto | | Print || Clear || Cancel: I

The first level finds line 96 as the source for EBUIM. As this is an addition, the second level
will not only search for ENDSUM, but also for UMSPKhe second level results in three sources:
again line 96 (the * indicates that it is a in [pojne 5 (the start of the program and conseqyentl
variable initialisation withDQ and line 93. The third level will search fromdi®3 backward for
variable UMS, which was read in line 10 witlis& Tcommand.

Data flow analysis is evidently more powerful tithe well-known cross-reference lists. A cross-
reference is a survey of the use in the entirenaragIn menu item “Data” you find a classified
cross-reference: th&ssignment Xref shows all places where a variable is assignedue vand
the Condition Xref shows all places where a variable is used in diton.

Procedure hierarchy: under menu item “Control flow / Call hierarchy”yavill get the procedure
call hierarchy displayed.

You can see the code of these procedures pamaltekeisource view window when you switch on
the “Autoscroll” for the source view window in mentem Options. This will automatically

position the source view window accordingly whemeyeu position the cursor in the call
hierarchy window.

2.2 Installation and running

2.2.1 Installing the demo version

In case a version ofeASM has already been installed, please save the thias have been
modified in a client-specific way (REASM.PRO, MACRARI).

Put thereASM floppy disk into the drive and run the installaticommand file INSTALL, which

is on the floppy disk, with parameter <drive lettecolon>: “INSTALL C:” (or “INSTALL D:” in
case you want to install on partition D). All filegill then be uncompressed and copied into
directory C:\REASM. A subdirectory C:\REASM\DATA @eated into which the generated files
are written.

0S2: Copy the DLL files (e.g., ARITY32.DLL) into a diceory which is specified in the
LIBPATH. When the current directory is includedtive actual LIBPATH, you may store the DLL
files in the REASM directory.

reASM version 2.5.1 / reASMgen version 1.5.7 8

WIN95, WIN NT: You may copy the DLL files into a directory spéedf in the PATH, or you can
run the programs from the REASM directory.

2.2.2 Installing the production version

The production version is protected with a hardwasg (dongle). While running, the programs
REASM.EXE and REASMB.EXE check whether the cormangle is connected at the parallel
printer port. The dongle is transparent to otherglies and to the printer.

Installing the production version requires the sateps as installing the demo version.

0S/2: Additionally, you must copy the dongle driver HAS82.SYS in an appropriate directory
and insert the following line in fle CONFIG.SYS:

DEVICE=<pathname>\HASPOS2.SYS

WIN95: Additionally, you must install the dongle drivey entering:
HINSTALL -i

Entering “HINSTAL -r” uninstalls the driver.

WIN NT: Additionally, you must install the dongle drivey lbbgqging in as administrator and
entering:
HINSTALL -i

Entering “HINSTAL -r” uninstalls the driver.

2.2.3 Uninstalling

Neither under OS/2 nor under WIN95 / WIN NT areiséyg entries etc. made. To uninstall, just
delete the REASM directorylelete the INI file in the operating system dioeg, and uninstall the
dongle driver.

2.2.4 Running the program

The command for batch-processing: “REASMB <filenez"
The assembly program <file name> is processed @mmeds Then REASMB returns control
to the operating system. This way, several progreansbe processed over night by means of
a command file; they can be inspected interactigéigrwards.

The command for interactive operation: “REASM”
You can interactively select for display an assemimogram that has previously been
processed by REASMB.
Because of a limitation of the class library usmay one instance of REASM can be active
at any one moment.

2.2.5 reASMgen

When reASMgen is used, these explanations are valid, too. Jeptace “REASM” with
“REASMGEN” and “REASMB” with “REASMGEDB".

2.3 Displaying the assembly source

Generally, assembly statements are displayed time seay they appear in source code listings,
except for the following differences:

» Operator and operand are placed in one column.

reASM version 2.5.1 / reASMgen version 1.5.7 9

Line continuation is displayed in the same lingjigal line).

When data or branch targets have not been giversdimey are given a name FILLERXyz,
which, in order to show the difference with nameshie original source, are in lower case.

If an EQUis used as a data item, tB®Uis redeclared as@S data item, which effectively is
a redefinition.

With STM and LM, both register operands are comthim#o one variable, or separated in
statements assigning the separate registers.

Certain instructionsBCT, BXH BXLE, etc., sometime&M and STMtoo) are separated in
single actions. This is shown on screen by “...§. Ehe instruction

LABEL BCT REG4,SCHLEIFE

is separated in:

LABEL BCT...
BCT REG4,SCHLEIFE

When the linRECH MVC AH is a procedure header, it is separated into:

RECH MVC...
MVC...
MVC AH

With CTRL + D (display) you will see that differeimtterpretations are attached to different
lines.

Simulated code modifications are also inserteddaltianal statements and indicated with

2.4 Displaying control flow

At the left side of the code, the program’s conftol is displayed by means of semi-graphical
arrows. These arrows are nested in such a wayaihger-distance branches are shown outside and
shorter-distance branches inside. Up to a nestingj of 18, a one-blank distance is kept between
the arrows; at deeper nesting levels, the arroevplaiced closer together.

] reASM Demo
File Havigate Control Flow Data Options Window Help
] Source View of ZINSEH: 1
4.9

re » > 0H
— FACE ZFELD.0{1,3)
coniral flov P 6 4 0
upwards SRA 6.1
28 SLA 6.1
29 CE 6,4
30 4 EHE DOFFEL
3 AP ZGES, ZFELD
32 <)< E HEXT
33 » JDOFFEL ZAF MFELD, ZFELD
34 HF MFELD,=F'2"'
35 CP MFELD,=F'10'
36 4 EL SUHH
37 [AP MFELD, =P'1"
38 » | SUMM AF ZGES, MFELD+1{1)
39 » » JHEXT LA 3,103
40 LA 3103
40 BCT. ..
41 ¢ ¢ ¢ BCT 4,5CH
12 xxxxxxxxxxPrijfziffer wergleichen
43 ZAP ZFELD,m
14 SP ZEHH , ZFELD j
AL PACL FETT_REF
[3] | 3|

reASM version 2.5.1 / reASMgen version 1.5.7 10

When you click on an arrow, you are shown the juanget. By double-clicking on the arrow, both
panes are positioned at the jump target.

With the mouse you can freely move the split bawken the control flow pane and the source
view pane of a source view window. Hint: when yoave the split bar very far to the right and
then release the mouse button, the bar will jumgklda the position corresponding with the
maximum nesting level of the arrows.

reASM version 2.5.1 / reASMgen version 1.5.7 11

3. Operating principles of the reASM user interface

3.1 Menu

The menu is activated with the F10 key, or with ¢oenbination ALT + key (where “key” is the
letter marked in the menu).

The options in the menu “Options” are selectedoggled with the ENTER key or with a mouse
click. Active options are shown with a tick or bglaanged text.

3.2 Function keys

F1: Context-sensitive help, especially in datjae window
ALT + F1: Switching help balloon in the menu anodf

ALT + F4: Closing the program

Page Down: One page down

Page Up: One page up

Arrow Down: One line down

Arrow Up: One line up

F10: Menu

3.3 Shortcut keys
The major functions are not only available viatienu, but also directly through key strokes:

CTRL + S: Select (operates on cursor position)
CTRL + K:Keep (operates on cursor position)
CTRL + D: Display (operates on cursor position

CTRL + F: Flow for-/backward (operates on seleciement)

CTRL + I: Input for-/backward (operates on selddtatement + data item)
CTRL + O: Ouput for-/backward (operates on selestatement + data item)
CTRL + U: Usage for-/backward (operates on selestattment + data item)

Additionally, withreASMgen:
CTRL + G: Generate statement (operates on custign)

reASM version 2.5.1 / reASMgen version 1.5.7 12

4. The control flow menu

Under this menu item you find everything relatingatsingle statement and the control flow.

4.1 Displaying pseudocode

As far as it can be generated in a meaningful ywagudocode text is displayed for a statement.
This pseudocode mimics PL/I and REXX.

Displaying a condition: at a branch instruction, branch targat condition are displayed. The
condition is composed from the branch instructiod the preceding compare instruction. The data
flow analysis takes into account the use of data aondition in the branch instruction (not in the
compare instruction).
Example: the lines
CR REG6,REG4
BNE DOPPEL
are displayed:
if REG6 =\= REG4 then goto DOPPEL
Displaying an assignment:
FELD1 := FELD1 + FELD2

In pseudocode, gariable is primarily displayed as a name, even when iatérmmore detailed
information is available. (For examplEBERR+44(3) will just be displayed aBBERR+44) A
data item explicitly addressed through REG6 is ldiggml as>(REG6) . Register 5 is displayed
asREGS If only parts of a register are accessed, théseband length in bytes are appended to the
name. Example: In the instruction

STCM 5,B'0111''ADR
only the three right-most bytes are filled, theseffis 1. The register is displayedR=sG5 1 3
Instructions that cannot be interpreted (such &aann macros) are displayed as “unknown”.
Instructions that do “nothing” are displayed asriat

For instructions of the typ&SING, instead of pseudocode the actueING constellation is
shown, i.e., taking account of previoB8)SH, PO, DROB, etc. (For further explanations refer
to page 38).

4.2 Cursor and select

reASM does not have a cursor like a word processor.tA ilam or an instruction is clicked with
the mouse. That positions the cursor at the coorefipg syntactical element (displayed in
reversed-video).

The Display and Keep functions only operate ondiesor position, just like the Select function,
which selects the statement or data item (greereseptation). A statement or a data item is
selected in order to use it as a starting poinafoontrol flow or data flow analysis.

The list ofend results is cleared at each select command. If you wastat@ the results, you have
to copy them to a “user-defined resuefore the next Select command.

reASM version 2.5.1 / reASMgen version 1.5.7 13

4.3 Flow

The “Flow” function displays the control flow. Stang from the selected statemenéASM
searches forward or backward (depending on theoww@orward / Backward) until the control
flow branches. With the one-choice option switcloéitl the window is positioned on the branch
statement and the first statements of the branateemarked red, i.e., they are copied into the list
of “end results”.

Example: In the UMSATZ program, select line 41 atw a backward searcheASM traces
control flow backward to the label EOF1 — howetat is not a branch, but only one path goes on
to the GET statement, and from there to the SCHLEIFE labeé (L0). At that point, the control
flow branches. So the window is positioned at lfie the “end results” are lines 9 and 32. In the
“End Results” window, which can be reached via meem “Navigate”, you will see this result,
too.

Another example: In the UMSATZ program, select Iit&3: ST 14 ,KUNDE-4 and do a
backward search. The control flow branches at tioequure header, as there are several (more
exactly, three) points from where procedure KUNBIalled. The calls to procedure KUNDE are
coloured red as a result.

With the one-choice option switched on, you aranpted to select one of the program branches.
The method using the one-choice option is descrilbdlce chapter on page 25.

4.4 Call hierarchy
The procedure call hierarchy is displayed as a tree

After every procedure name, the line numbers osthd and the end of the procedure are given in
parentheses.

When a procedure is called from several pointsjlitbe resolved in-depth at only one point in the
tree.

(W] Call Hierarchy 2|

J ERTSTEROC2
e »DRUCKE {(106-117)
Al =KOFF =
IERERETES
(B)-..__—C:DFEHLER
M —JPRTEST
L —DRTEST (&0-101)
C_MLTO01 (extern)
oFUTZ (extern)
C_MLTO021 (extern)
—_»FROG1 {extern)
—_UPHINW (extern)
—C_ADULT {(extern)
—_OFALL (extern)

] | DI:
| Goto I | Print || || Cancel |

If you want to see the resolution of PRTEST at (A) with a second mouse click, the cursor
jumpsto (B), where PRTEST is also called and where the call is resolved in-depth.

Correspondingnacro declaration¢cf. page 41) ensure that such macros, that ihrigmesent
calls, are included in the tree. The above sampgram TSTPROC2 contains e.qg. line

DFHPC TYPE=LINK,PROGRAM=ADULT

Without the declaration of the DFHPC macro in fléMACRO.AR]| the call to ADULT would
not have been recorded in the call hierarchy.

The option Autoscroll allows the source view window to be synchroniseith wihe cursor
movements in the call hierarchy.

reASM version 2.5.1 / reASMgen version 1.5.7 14

5. The data menu
Under this menu item you will find:
 the display of data declarations extracted fromitisguction;
» several data flow retrievals — these start frorelacted statement and search the next use;

» special cross-references — these take a data nadr@@duce program-wide references.

5.1 Display

When the cursor is placed on a statement’s opethaccommand CTRL + D will display the data
attributes. Displayed are:

» the local name and the local length;

» the variable’s global declaration, if necessanhwiame of the DSECT in which the variable
is declared;

» comment in the declaration line, if any.

An external variable (a variable declared with EXX'R assembler, or an unknown variable that
reASM has inserted as EXTRN afterwards) is given th&ibas length of 999 bytes. The purpose
of this fictitious length is that all retrievals d&d on the knowledge of a length can still be
processed.

52 Zoom

When the cursor is placed on the operand of amstait the key combination CTRL + '+' (on the
numeric key pad) opens another window which istposed on the data declaration.

5.3 Select
The variable on which the cursor is placed, isdett It is displayed in green.
A variable is selected in order that e.g. a data Btarting from it be displayed.

5.4 Data/ Input, Output, Usage

These functions allow the data flow to be analyséthen e.g. in statement 93 of program
UMSATZ the field UMS is used and you wish to knowere UMS has previously been assigned
a value, you position the cursor on UMS with a neoalick, select UMS by typing CTRL + S (it
will be displayed in green) and then type CTRL +The data flow analysis goes back along all
control flow paths that lead to statement 93. This way, it will fiatl potential data sources for
UMS. Normally, the result will consist of severakiructions; in this example it is only the GET
statement in line 10.

The direction of the data flow analysis is set undenu item “Options Forward / Backward”.

The meaning of Input/ Output / Usage has beenerhas such a way as to be as close to the
intuitive meaning as possible.

reASM version 2.5.1 / reASMgen version 1.5.7 15

5.4.1 Output

The memory location (or field, or register) seactlier is set (normally direction “backward” is
selected).

Example: You select theWISUMKfield in a statement and type CTRL + O. The seavohld
stop at a statement like

ZAP ZWISUMK,=P'0'

or
AP ZWISUMK,=P'1'

because the statement sé®¥ISUMKits “output” isZWISUMK

When the search reaches the start of the progranthanfield has not been initialised (either by a
DC statement or by a profile entry), a message 0t. initialised” is produced. If the field is
initialised, thestart of the program is recorded in the “end results” list (not D€ statement). E.g.,
in the UMSATZ program, the program start is the UM label.

5.4.2 Input

The memory location (or field, or register) seacthhar is used in a calculation or in a condition
(normally direction “forward” is selected).

Example: You select thaWISUMKield in a statement and type CTRL + |. The seavolld stop
at a statement like

ED DBER,ZWISUMK

or

AP ZWISUMK,=P'1'
The branch instruction takes account of the usgatd in a condition. Example: a backward input
search for REG4 stops first at the BNE statement:

CR REG6,REG4
BNE DOPPEL

5.4.3 Usage

The memory location (or field, or register) seartthar is used as input or output in the statement
or is used in it in another way, e.g. as a poinésing FIELD in a length expression like
L'FIELD is not considered a usage.

5.4.4 Method of operation

When you request a data flow analysis with respeet certain statement for a variable which is
not used in that statement (so it cannot be selegith the cursor), then just select the statement
and choose a data flow function (e.g. by meansTRIC+ O). Then a window “Select data by
name” appears (cf. page 23), in which you can ch@o®gister or enter a field name.

The data flow analysis takes into account rededing by not using the variablefame, but its
memory location andlength.

When you select the variable to be searched, trelsevill be executed corresponding to the local
length of the variable, e.g. with length 18 in

MVC DBER+43(18),DBER+42

reASM version 2.5.1 / reASMgen version 1.5.7 16

If, however, you select the variable using “Seldata by name”, the length of tixs or DCdata
item is used in the search.

line 163
LA 4,1(4)
A
line 115
LTR 4,3
line 136
LA 4,1(4) . line 31
line 81
LA 4.1(4) BAL RUMPF
line 143
LA 4,1(4) line 7
line 32 LA 4.0
line 29 line 16 line 25 gfLZPSOPF line 10
BAL KUNDE BAL KUNDE BAL VERTR

line 31
BAL RUMPF

line 105
LA 4,1(4)

Result of a manual single-level data flow search for the sources of REG4 in line 105

W] Results of searching for output of REG4 &
-

L 7 La 4.0 |

L 81 L& 4.1(4)

> 136 La 4.1(4)

¥y 105 LA 4,104)

_>» 115 LTR 4.3

143 LA 4,104)

> 163 La 4.1(4) =
A bl |
|Cupg £ Mergel | Goto | | Print | | Clear || Cancel I

Result of a single-level data flow search for the sources of REG4 in line 105

The data flow analysis is executed in the backgloluring the search you may switch to another
program via the OS/2 task list, or browse witteASM and call up the display function.

When the data flow analysis takes too much tima, pay cancel the background thread via menu
item “File / Stop task". No results will then beadlable.

reASM version 2.5.1 / reASMgen version 1.5.7 17

Explicitly-addressed data are treated in a spe@gl(see page 37)
Error sources:

* The data flow analysis follows the control floWwhen the control is not correctly determined (atgcomputed branch targets), the data flow
analysis results will also be incorrect.

* Explicitly-addressed data (g.v.)

* Unknown macros: in case they read/write/modifyacidhis will not be recognised as long as the maes not been defined accordingly in
STMACRO.ARL

* Wrong read/write macro parameter lengths: e.ga iBET macro or a DL1 macro a field X, which is ldesd with a length of 2, can be
specified as an input field, but VSAM or DL1 wrigegreater length, e.g. 1000 bytes. Data flow aimlgs a variable with offset 4 with
respect to X will not stop at this macro but wilbpeed — possibly though the entire program.

5.5 Data/Extended Output Backward

Backward data flow analysis is also available ireatended function. It goes back stepwise to the
different sources that contribute to the valuehefgpecified variable.

The first step runs like the usual output analyiee second step takes the end points of the first
step and further traces the corresponding variaBlesume the original variable is REG4 and the
end statement of the first step assigns to REG4uheof REG5 and REGE6:

LA REG4,0(REG5,REG6)

Then the second step traces REG5 and REG6 backviRE@S may be filled from a variable:
L REGS5,FIELD1

Then the third step will trace FIELD1 backwards.

When you call up the function “Extended Output beaid”, you will be prompted to specify how
many steps have to be analysed.

|m] Results of searching ext. output backward for 4

= 7 Li 4.0

= 81 Li 4.1
Lo 71 Li

> 136 La 4.1

4.1

4.3

S
—
.
—

x> 105 La
=2 115 LTR
—— 6 L

- 154 LTR
—(_» 147 LA

= 136 LA
=2 115 LTR
—(*1 163 LA

- 7 Li
—<¥» 105 LA
—(*] 115 ITR

A bl
|Cupg ! Merge| | Goto I | Print || Clear || Cancel: I

-

Result of the two-level data flow search for REGA4.
Fromline 115, reASM no longer searches backwards for REG4, but for REG3.
Line 136 does not show deeper results, because line 136 is dead code.

Together, the end points found make up the seh@dfesults. Under menu item “Navigate / End
results” you will see them displayed as a tree. Whevariable references itself in a loop, the
statement will be marked with an asterisk (“*”) pifior to the start of the data flow analysis the s
of end results is not empty, it will be cleared before the anslytarts.

Internally, the “Extended Output backward” functisrcomposed of several calls to the single step
data flow analysis “Output backward” function. Tieths followed are not displayed.

reASM version 2.5.1 / reASMgen version 1.5.7 18

5.6 Extended Usage Forward

You may use this function to stepwise trace tha flatv forward. You will see the usage of a field
and how its value propagates into other variables.

Suppose you know that in the UMSATZ program (whishsupplied with theeASM demo
version) the field UMS is read, and you want toaththe company’s turnover calculation rules.
You select theGET command as a starting point, choose funciatended usage forward and
specify UMS as the field to be traced. The resuthis analysis will be a set of statements, ard th
stepwise character of the analysis is displayeaitase,

W] Results of searching ext. usage forward for UMS &
10 GET. . . EINGABE . EEER =
= 93 FACK THSFE, UMS B
tcz:- 10 GET... EINGABE EBER -
(| 94 AP ZWISUMY, THSFK addiere Vertreter
I 95 AP ZWISUME , UMSPK addisre Kunde
LA 96 AP ENDSUM, UMSFK
T 36 ED CBER+42(12) ZWISUME Druclkauf ber
_» 158 ED DEEE+42(12), ZWISTHK
167 ZAF ZWISTME, =P'0"
D 94 AP ZWISUMY, THSFK addiere Vertret
= 12 ED CBER+42(12) ZWISUMY
= 45 PUT AUSGAEBE, DEBER
L 17 MYC CBER+42(12) HASKE
=3 120 ED DEERE+42(12) ZWISUTHY
CE D 94 AP ZWISUHY, UMSPK addiere Vert
ECD l4e ZAP ZWISTOMY,.=F'0"'
=1 123 POT AUSGABE , DEER
Lo 138 MVC DEEE+43(18) . DEER+42
— > 146 ZAF ZWISTOMY, =FP'0" -
e 2l
| Copy / Merge | | Goto | | Print | | Clear | | Cancel: |

The first step only finds one result: line 93. Basa the assignment, UMSPK will be included in
the next search set, as is ZWISUMV from line 94 aWdISUMK from line 95 — the search set
already contains 4 variables. The analysis from 8B leads to both line 96 (tracing UMSPK) and
lines 36, 158 and 167 when tracing ZWISUMK.

The assignment in line 167 ends the lifetime sact the old ZWISUMK and starts a new
incarnation. Line 167 is the “fringe” of the valigiarea of the analysed ZWISUMK and is
therefore displayed grey; the tracing for ZWISUMKss here. Similarly for ZWISUMV in lines
94 => 146.

An example from another program in the contextarfwverting to Year-2000 compliance. Suppose
you know that this program reads record INP, whightains a 6-digit date field named INPDAT.
You want to know how this field INPDAT propagatdsdugh the program, e.g. in order to
identify other 6-digit date fields. You select t&ET command as a starting point, choose the
Extended usage forward function and specify INPDAT as the field to bectd. The result of this
analysis is a tree of statements found:

reASM version 2.5.1 / reASMgen version 1.5.7 19

W] Results of searching ext. usage forward for INFDAT

£ 172 P10O0 GET... EAGI,INP
=1 180 ZAP IDAT. IHP+21(4)
tcz:- 172 P100 GET... EAGI,INF
—1 181 UHFE ZEILE+45(6), IDAT
L= 183 CF VDAT.IDAT .~ BH P100X
=1 187 AP IDAT.=P'1’
(=0 188 ZAP OUTP+21(4) . IDAT
@M
CE» 180 ZAP IDAT. INF+21(4)
— 191 FUT AAGI QUTE
|: 184 ZAP OUTP+21(4),VDAT
CFEy 188 ZAP OUTE+21(4), IDAT
ey 187 AP IDAT. =P'1°
= 184 ZAP OUTE+21(4), VDAT
—c®> 183 CP VDAT.IDAT -~ BH P100X (=
i 3

|Cupy.o' Merge” Goto || Print || Clear || Cancel |

E3

B

The INP data structure
INP DS O0CL51

DS CL2
INP2 DS CL14
DS CL5

INPDAT DS PL4

has been inserted into the program afterwards,118testill references the field by offseeASM
recognises such redefinitions and addressingsfegtoBecause of theAP assignment, from line
180reASM will also tracelDAT and will find statement 181, in the next stepestagnt 183, then
187 and then 188. In statement 183 the control flmanches tdP100X according to theCP
compare ofVDAT andIDAT. As the corresponding option “Search mode likee daarch” (see
below) was switched omeASM will from here on also tracéDATand will find statement 183 (in
a loop) and 184. After the assignment in staterh88{OUTP+21(4) will also be recognised as a
date, and a further trace of this field componeilitemd up at thé°UTin line 191.

The Extended usage forward function consists of several calls to the datavflmalysis function
Usage. At the end of every single call, the results arelysed in order to determine the
appropriate search set for the next step:

* When XYZ is moved into a field ABC, from here ontlhoXYZ (which is still valid) and
ABC will be traced.

* When XYZ is assigned something, the search for XMl end at this point — unless this
assignment also involves XYZ itself (example aboX@: in line 187). When the trace is
finished, the statement will be displayed in gneythe result in order to make clear that at
this point XYZ's first incarnation ends and a sed¢@ne begins.

* When a pointer is placed on the date searched,aioiLA R5,XYZ , the pointer (the R5
register) is also traced. Explicitly-addressed datech a€)(3,R5) , can be searched in a
similar way.

* When the variable searched XYZ is compared to ABE, option “Search mode like date
search” allows you to control whether or not ABAlwe included in the search set. In the
above UMS example this was not very useful, buhacase of the search for the INPDAT
date it is. In general, this option is useful ingh cases where you actually knodata type
and want to trace its propagation through the nogrExamples of such data types are 6-
digit dates, amounts of money (in view of the caosian to Euro), or just a simple client
number. The search for the newly introduced dat€C Afdll of course follow the control
flow forward, where in this case it might also beeresting to find out the result of a

reASM version 2.5.1 / reASMgen version 1.5.7 20

backward search (in the above INPDAT example: whees VDAT come from?). You can
achieve this in a second evaluation via VDAT.

Another example for the “Search mode like date d€aoption: the client number KNR has a
length of only 5 characters and has to be madeelongou know that KNR is read into the
UMSATZ program as part of EBER, and you teASM search for KNR, starting at the GET
statement The result:

m] 2: Results of searching ext. usage forward for KHR &
10 GET. .. EINGABE EEER =]
— 15 CLC MERKENE,KHE < BE WEITEER1 2|
SEE] 10 GET. .. EIHGABE, EBER =
166 KUNDENEU MVC DEEE+8(5) . KHE
168 HMVC MERKKNER , KHE
(=1 166 KUNDENEU MVC DEEE+8(5) . KHE
168 HMVC MERKKHER , KHE
L] 59 MVC DEEE+1({L'DEEE-1 . DEER fiill
= 123 POT AUSGABE, DBER
L= 139 PUT AUSGAEBE, DEBER -l
e bl
|Cupg ! Mergel | Goto | | Print || Clear || Cancel |

Lines 14 and 15 compare KNR to MERKKNR, from whigle may conclude that MERKKNR
also has data type “5-character client number”.eLt68 is the end of the incarnation of
MERKKNR used in the comparison of line 15, and & m&carnation begins. In line 166, a part of
DBER is included in the search set — when the thember is made longer, this one should also
be made longer. In line 59, DBER s re-initialigedsplayed in grey), or alternatively output indin
123 in AUSGABE.

5.7 Parameter input with Extended Usage

b4 Parameters for extended search &

Enter depth of dataflow search:

Store result in tree nr.
0: End Results
1-999: User Defined Results

Search mode like date search [

| 0K | | Cancel |

In this dialogue window you enter:

» The desired number of steps for the analysis.
Every step will cause an exponential increase @htimber of control flow branches that are
analysed, as well as the number of variables tratleerefore begin with a “prudent” value,
such as “3".

* Where to store the results: in tbad results or in one of 99%ser-defined results. Theuser-
defined result with the number specified will be created; if iremady exists, you are
prompted for permission to overwrite it.

* Whether or not the search is to be executed aste skmrch (variables in a compare
statement will also be included in the search S@f. description ofextended usage
forward.)

5.8 Data/ Reg free
How do you determine whether or not register Xe®fat a certain point in the program?

» Select with CTRL + S the element concerned (séfecstatement only, no data).

reASM version 2.5.1 / reASMgen version 1.5.7 21

* In the Data menu, select “Reg free”.

* You are prompted to choose a register.

* When you click “OK”, the search starts.

* When no statements are found as a result, theeegss'free”.

* When the register is used as an input in the data further on, it is not “free”; the
corresponding statements are displayed as a result.

This menu item is a combination of the normal dta analysis. First it checks whether register
X is used as a base register. If not, a forward daairch for register X is started. In case regite
is used — not as output, but as input — rasfree.

If the set of theend results is not empty at the beginning of the data flowlgsis, it is cleared
before the analysis starts.

5.9 Data/Assignment Xref of...

Frequently those points in the program are of @dewhere a variable is assigned a value. You are
prompted to enter a variable name or to choosegetee; then you will get a list of those
statements.

Unlike with the data flow analysis, the memory lioa is not taken into account here, but the
name only. Always the first name of an expressi®rused for this purpose. If an assembly
instruction looks as follows:

MVC EBER+OFF(L'FELD2),FELD2

the statement will be entered in the Xref underrnihme EBER, not under the names OFF and
FELD2.

5.10 Data/ Condition Xref of...

Frequently those points in the program are of @dewhere a variable is used in a condition. You
will be prompted to enter a variable name or toos®oa register; then you will get a list of those
statements.

The statement entered into the list will alwaysheeone where the condition has ist effect. E.g. in

the case of
CLC MERKKNR,VNR
BE WEITER1

the BE statement will be entered in the condition. TRislone firstly because ti@&_Calone is not

a complete condition (the compare operator issiifising), but only together with e.gB& is the
condition complete. The second reason is thatBBestatement is the one that in the textual
representation represents the complete informa&tld-like.

m] Condition Xref of REG4
41 if REG4 > 0 then goto SCH

101 if REG4 == REGS then goto GLEICH
102 if REG4 < REGS then goto AKLEIN
103 if REG4 > REGS then goto AGROS55

| Goto | | imdalg L Dlam | Cancel |

A Condition Xref of the ZINSEN program.
Because under Options the text representation has been set to PLH-like, the window shows pseudocode.

reASM version 2.5.1 / reASMgen version 1.5.7 22

5.11 Prompt window: Select Data by Name
You are prompted to either enter a variable nanahoose a register.

b4 Select Data by Name
type a name

EBER

or select a register

(JREGD () REGH
(JREG1 () REGS

(JREGZ () REGID
(JREG3 ()REGI1
(JREGA () REGIZ
(JREGS () REGI13
(JREGE () REG14
(JREGI () REGIS

| 0K | | Cancel |

If you want to enter a variable name:
» Type the name. The text currently under the cussdisplayed as a default value.

« if only part of this variable should be used fataaflow search, enter also offset and length:
<name><offsetX<length> e.0.DBER+22(5)

* Click the OK button with the mouse.

» If you have typed a non-existing variable name, essage window is displayed saying
“variable not found”. Click on OK and correct thame.

If you want to choose a register:

» With the TAB key, leave the entry box and with #reow-down key move to the register, or
simply click the register with the mouse.

* Click the OK button with the mouse.
With the CANCEL button you leavié@e window without triggering any activity.

In case oExtended usage forward you can enter several fields to be searchedbeaause they are
strongly related semantically. If you want to speanly one field, you proceed as described
above. If you want to specify more than one figloli enter the first field as described above and
then click on the MORE button. The field is thenvad from the left-hand side of the window to
the right-hand side, and you can enter the nekt firethe left-hand side. When you have collected
in the right-hand box all fields to be searched gtick the OK button.

5.12 Displaying the number of statements found

With control flow and data flow, the top-right cemof thesource view windowshows two
numbers (with Extended data flow only if you hapedfied “end results” as the target):

path: The number of statements between the selecteshrsat and the end statements (i.e., the
statements searched).

end: End pointsof the search: the number of statements found thétfunction (F, I, O or U).

reASM version 2.5.1 / reASMgen version 1.5.7 23

On the screen, the statements are shown coloured:

Start statement: green
Start data: dark green
Path statement: yellow
End statement: red

In addition to this, the text under the cursortiewsn in reversed-video.

The path number is not always shown. When e.gaecsecan use the results of an earlier search,
or when an extended data flow search is startedhen the path is too long, then the path is not
shown. In that case, a “zero” or a “one” is displdyas the path.

When a statement or a data item is re-selecteghdtieand end results sets are cleared.

When the selection has been cancelled with “Nagig&tlear selections”, the yellow-red box with
the path and end numbers will also disappear.

reASM version 2.5.1 / reASMgen version 1.5.7 24

6. The Options menu

6.1 Options / Autoscroll

The Autoscroll option refers to only one sourcewigindow. In another source view window this
option can be set differently.

When the Autoscroll option is activated for a seussew window, this window will be per-
manently positioned at the cursor, when the cussoroved in another window.

In the following windows, a cursor movement willtaonatically induce a repositioning of those
windows for which the Autoscroll option is activdte

e Cursor movements in anoth&wurce view window

* Cursor movements in theall hierarchy window In practice, this means that the
autoscrolling window always shows the proceduredaean which the cursor is placed in
the call hierarchy window.

» Cursor movements in thend results windowin practice, this means that in the end results
window you will see an abstract representation isting of several statements, and in the
autoscrolling window you will always see the conitex the current statement of the end
results window.

6.2 Options / Font

This allows you to change the font of the activarse view window. Only monospace fonts are
available.The new font is remembered in an INI file and uaed new program start.

The semigraphical control flow display uses spegi@CIl character that are not available in all
fonts. Under OS/2 the VIO fonts are recommendedeulVindows the “Terminal” font (a bitmap
font), or the font SANSMP.TTF, which is supplied thereASM distribution disk.

6.3 Options /forward & backward

This selects the direction in which the Flow, InpDutput and Usage function operate. The option
is toggled between forward and backward with th@ER key or a mouse click.

6.4 Options /one-choice

The One-choice option is designed to follow a paogpath step by step (e.g. for a “desktop test”).
A backward operation is also possible, e.g. whelnrap is available and you want to find out by
what path the program has reached the point ofratmaddermination.

a. Choose the “One-choice” option and the “Forward*Backward” option (in this scenario we
assume that you chose “Forward”).

b. With CTRL + S select the statement at which yoatwa start.

c. With menu item “Control flow / Flow” or CTRL + Het reASM follow the program flow. As
soon as the control flow branches or executes eedwoe call, a prompt window appears asking
you which path you want to follow.

reASM version 2.5.1 / reASMgen version 1.5.7 25

4 Choose where to go

condition:
| 68 REG3 == 0 |

| TRUE | | FALSE | | Choicepoints | Cancel |

REASMO8A

When the forward direction has only one branch. (argunconditional branch)eASM will
nevertheless stop in order to inform you aboutdtaach. In this case, only the TRUE button is
available.

While the prompt window is waiting for an answesuycan browse in the main window, e.g. in
order to more accurately study the branch statement

d. In the prompt window, you choose with one of thitims TRUE and FALSE which branch
you want to follow. Your decision is stored in ttigoice points list, the new statement is auto-
matically selected and the cursor is positionedtdgreen plus reversed-video looks purple).
You can now proceed with(i.e., follow the controlflow with CTRL + F) or wh e.

e. Any action

f. Proceed witlt.

At any time you can call up the choice points li&t menu item “Navigate / Choice points”, in
order to:

* Look up what statements you have followed so fayou have switched on option “Text
PLH-like”, the branch conditions are also visible.

» to “reset” the path, by deleting choice points twttup, up to the choice point where you
would like to follow another path. Then you sel88OTO” in the box, so thateASM will
position the display on this statement, and them select it with CTRL + S. Now you
proceed withc.

A procedure call is also treated as a branch (agthdhe call has no condition). This allows you
not to follow a procedure call when it is curremntiyt of interest.

Calling a data flow function will automatically seh off the one-choice option.

reASM version 2.5.1 / reASMgen version 1.5.7 26

4% reASM Demo [=|O
File Havigate Control Flow Data S¥-Options Window Help
4% Source View of UMSATZ: 1 o o
11 retd 4 < GET EINGAH pathc? |EHGONN -
12 CH 4, =H"'20

13 < EL WEITEER1

14 [CLC MERKKNE , KHR]
1t < EE WEITEER1

16 [BAL 14 KUHNDE

17 CLC MERKVHE . YHR

18 [EE WEITER1

19 BAL 14 VERTR

20 BAL 14 KOPF

21)¢ B WEITER2

22 [» | WEITER1 DS 0H

23 CLC MERKVHE . YHR

24 < < EE WEITERZ2

25 | =F 1 ETE

%g 4 Choose where to go

28 junction statement:

29 | 22 WEITER1 DS 0H |
30

31 coming from...

32 18 BE WEITERT]
33

34 13 BE WEITER1

35 13 BL WEITER1

36

37 |
38

;

A1

One-choice backward, from the selected statement in line 24.
Line 22 shows the junction: from which one of the three possible points did we come to line 22?

6.5 Options / Text PLH- & ASM-like

In the end result, user-defined result and chomeatp windows, statements are displayed. With
this option, you control whether the statementssii@vn in ASM-style or in pseudocode (PLH)
style in these windows. The option is toggled witie ENTER key or a mouse click. Default is

ASM-like.

reASM version 2.5.1 / reASMgen version 1.5.7

27

7. The File menu

7.1 Processing an assembly program

By means of file transfer, the assembly programtrhase been transferred to the PC as an ASCII
file. It can be available either as 80-column seulext, or as a compiler listing. The compiler

listing is recommended. The file to be read musteha filename extension. The extensions
“ASM” or “LST” are recommended.

There are two programs:
» REASM.EXE s a presentation manager program.
* REASMB.EXE is a batch program receiving a paramdherfile name.

Because of the deep semantic analysis, processieg some time (for a big program possibly an
hour). That is why there is no menu item “File /aReASM-File”. Instead, the batch program
REASMB must be used, which displays the progresshefprocessing on the OS/2 console.
Warnings and errors that occur during this time r@oé displayed in a window that has to be
released with a key stroke, but are logged ineedZ.LOG.

Processing consists of the following steps:

1. Syntactical analysis (“performing read ...")

2. Program flow analysis (“performing pflow pass”

3. Analysis of assembler actions (“performing actjio)"
3. Preparing screen output (“performing cpl_list ()"

and undereASMgen some more steps that are selected in the profile.

The ASM source to be input is supposed to be sio#dly correct. Syntax errors may cause the
program to abort. Unknown instructions or macrody goroduce warnings; their operation
(input/output) is ignored. When an unknown macratams a branch (like the GET macro
branching to an EOF label), this is of course rakeh account of in the control flow, and
consequently not in the data flow either. Thisaian may sometimes cause a label like EOF1 to
be reported as “dead code”.

When a listing file is processed, possible machmaesion lines (i.e., lines preceded by a “+”) will
generally be masked. The reason is that the seenavel of macro expansion is the system
programming level, not the commercial programmigdgel. In our opinion, macro expansion lines
will disturb reading and may impede analysig@®SM more than contributing to it.

In the MACRO.ARI file you may specify for every gie macro whether or not its expansion must
be taken into account.

COPY statements are executed, i.e., the file tontleded has to reside in the “asm” directory or
in the “copy” directory. (This only applies whenusce files are used for input, not listing files.)

However, it is often not useful to read big compldata declarations (e.g. from CICS definitions).
That would unnecessarily increase program sizetf@enPC) and would lead to even longer
processing times. You should rather confine thiswtmat is actually used in the application
program; most often, this is just a few fields.

The necessary EQU'’s should be present in a CORYTiie usual register declarations, RO,..., R15
and REGO,..., REG15 don't need to be defined by EQ&s they are already built into the syntax
analysis.

reASM version 2.5.1 / reASMgen version 1.5.7 28

reASM must recognise an unambiguous control flow. Prablenay occur with computdtanch
addressefef. page 35)

7.2 File/ Source View

With this menu item you may open another sourcer viendow on the ASM source. This window
can be positioned independently from the other wivi] you may assign it other exclusions, etc.

7.3 File/ Open and Save Work

It is possible to save the current database filehefprogram and reload it at a later stage with
“Open”. When you prepare an ASM source with REASMEEASMB will generate such a
database file.

These files are called XYZ.IDB and XYZ.IDC. The “@@ function opens a file selection window
in which you choose the file to be loaded. OnlpBlfiles are shown.

7.4 File/ Print

After you have specifieffom what lineuntil what line the file is to be printed, the lines Iviie
printed in a background thread to a file (filenaex¢ension LRE, in the DATA directory; any old
LRE file will be overwritten). When the backgrouptbcess is finished, a beep will sound.

Control flow arrows, assembly code and pseudocodevery line are printed. Consequently, the
line length will usually exceed 132 characters.

7.5 File/ MergePrint

When an ASM listing is used as input, it is ofteren convenient not to print theeASM
information to a separate file, but to merge ibitite existing listing file.

The “MergePrint” function reads an ASM listing fradisk (it must be the same file as used in the
REASMB processing!), inserts control flow arrowsdarints it (flename extension LRE, in the
DATA directory; any old LRE file will be overwritt®. Pseudocode is not printed.

You may control where the arrows are printed. Aatjae window appears in which you enter two
columns: from colummx to columny in the listing will be replaced by the arrows,.drgm column
0 to column 35.

When the range from to y is smaller than the width needed for the arrows,resulting listing
will become wider. More specificallyx andy may be equal; in this case only this particular
column in the listing will be overwritten.

It is not (yet) possible to speciffom what lineto what line is to be printed.

7.6 File/ Stop Task

This menu item is only available when a threadiisiing in the background. When you select this
menu item, the background thread is terminated. &texuting function is aborted without any
result.

reASM version 2.5.1 / reASMgen version 1.5.7 29

8. The Navigate menu

8.1 Navigate / GOTO Label...

With this dialogue, the source view window can bsifioned at a specific label. The label may be
a branch label or the name of a data declaration.

The dialogue window that appears, contains theveilg support for fast navigation:

* As far as can be determined in a useful way, thegsbn which the cursor is positioned is
displayed as a default in the entry field. Therefaf you have first placed the cursor at a
convenient point, the correct string will alreadyib the entry field.

* With the key combination SHIFT + INS you can copiest from the clipboard to the entry
field.

* You can pull down the combo box which shows thetla®e entries used.

» With the combo box, you can select the “Progrant”sés a target. This is not the same as
line 1, but the line at which the program’s conftol starts.

8.2 Navigate / GOTO Line...

With this, you can position the source view windata particular line number.

8.3 Navigate / End-Results & User Defined Results
The statements found in a data flow analysis aglayed.

When a data flow analysis function is “extendeduycan choose whether the results are to be
stored in theend results (default) or in one of 998ser-defined results. The differences between
these two options are:

» Theend results are automatically cleared upon every Select aadhars made ready to store
new results. The set aser-defined results is managed by yourself.

» In the source view window, thend results are visualised in red, the number of end ressilts i
displayed in red in the top-right corner. Theer-defined results are not displayed in the
source view window.

» The user-defined results can be saved with “File / Save Work” when you enttASM
session, so that they are available for the nesdige.

reASM version 2.5.1 / reASMgen version 1.5.7 30

W] Results of searching ext. usage forward for ZWISUMK &

E3 8 ZAF ZWISUME,.=P'0" =
= 36 ED DEER+42{12), ZWISUHEK i
L= 39 PUT AUSGABE, DBER L
L 41 HMWVC DEERE+42{12) MASKE
= 95 AP ZWISUME , THSPE
36) DEER+42{12), ZWISUTHE
FD 95 AF ZWISUME , THSFE
158 ED DEER+42{12), ZWISUHEK
T 167 ZAP ZWISUME . =F'0"
=1 1&5& ED DEER+42{12), ZWISUHEK
T 167 ZAP ZWISUME . =F'0"
1el FUT AUSGAEE ., DEER
—_» 167 ZAF ZWISUME . =F'0" -
Bl b
| Copy / Merge | | Goto | | Print | | Clear | | Cancel; I

If you have used “extended data flow”, as in thkaraple, the tree displayed is as deep as the
number of steps you specified, and at some powgs deeper due to the search method used. In
non-extended data flow analyses the tree is ored tep.

As is usual with trees, two mouse clicks on a misigs in the tree will collapse the tree at this
point, while the minus sign becomes a plus sigrthéhexample shown here, this has been done
with the second-last line, tH&UT.

When a tree branch has already been expandedtaeapoint, this expansion is not repeated, but
the point is marked with a plus sign. In the exargilown this is the case with BB at line 36,

on which the cursor is placed. When you now givetlagr mouse click at the cursor position, the
cursor jumps to the point where the expansion @lavle (in the example shown, to tB®in the
second line.

When the data flow analysis refers to itself iroag, the statement is marked with an asterisk (in
the example, thAP in statement 95).

In case of an “extended usage forward” data floalyamns there are statements displayed in grey.
Here the variable is given a new value; in factuhldity range of this variable traced ends here.

In the options menu, you may select whether themsiants are to be represented in an “ASM-like”
or a “PLH-like” way. When a particular statemeninsluded in the tree and you do not understand
why, just try to switch the representation to “Plikk”. Most likely you will then see why.

When you enlarge the window by dragging with theus® the inner pane is enlarged
correspondingly. So you may set the visible seatitimer by means of the scroll bar or by dragging
the window.

With the “Goto” button you can position the souveew window at the statement that is under the
cursor. This way you can very easily show the cdriiéa certain statement.

With the “Print” button you can export the treeA8CII to a file. The stepwise character is show
in ASCII by an indentation with blanks. The pluslasterisk characters have the same meaning as
in the graphical display, and the statements dysplan grey will be marked with an “f” (“fringe”).

With the “Clear” button you clear the results. A8 theend results, this is equivalent to menu
item Clear selections.

With the “Copy/Merge” button you can copy the togemerge it with other trees.

reASM version 2.5.1 / reASMgen version 1.5.7 31

8.4 Copy/ Merge User Defined Results
Theend results and theuser-defined results can be copied or can be merged with other trees.

b4 Merge with an existent tree or Copy into a new tree &

[<] 3|

Eater title of aow fres | |

Copy: Enter the number of a user-defined results wrsditill free.

Merge: Choose a tree from the list of user-defined resutte tree from where you clicked the
Copy/Merge button will then be added to it. In the lower griield you enter a title for the tree

that results from this merge. In case you wantetain the original version of the user-defined
result, you must first copy it to another user-dedi result number.

The merge operation can be useful for several nsasoich as:

* You have traced a variable XYZ witxtended usage forward with a search depth of 3, and
then you have separately selected the branch’peimti and searched it in-depth. You may
want to combine the results in one tree.

* You search two variables, X1 and X2 which play gomaole in a business rule. Starting
from statement N you did aextended output backward search for X1, and then another
search for X2. It may be useful to combine the tesults in one tree.

You must decide for yourself whether or not thiggineg trees makes sense. It is, e.g., senseless to
merge a tree from aextended usage backward search with one from aextended usage forward
search.

8.5 Navigate / Clear Selections
Thepath andend results sets are cleared; no more statement or data geelected.

8.6 Navigate / Keep List

Keep List is used to “bookmark” a statement. Suppgsu have positioned the cursor at line 41,
and you want to have a short look elsewhere and wareturn to line 41 afterwards, you type
CTRL + K, the shortcut for the KEEP command. Tteteshent will then be added to the Keep list.

In order for you to easily return to the currersgfected statement (green), it is always contaimed
the Keep list. It cannot be removed with DELETE.

Via menu item “Navigate / Keep List” you can digpnd manage the Keep list:
« GOTO: positions theource view windovon the corresponding statement.
 DELETE: the corresponding statement is removexh filee Keep list.
* CLEAR: all statements are removed from the Kesip li
* CANCEL: quit the window.

reASM version 2.5.1 / reASMgen version 1.5.7 32

8.7 Navigate / Choice points

Choice points are only available when the one-@aigtion is switched on and you follow the
program flow step-by-step witklow. The choice points are the branch points that Hzeen
collected so far; they represent the path follosedar.

With the GOTO button you position the source vieilndow on a statement. To do so, you select a
line in the list box and click on the GOTO buttdie choice point window will be closed.

Positioning with the GOTO button has no effect dmere a command like “Flow” will proceed.
That is determined by the “Select” command. Indhe-choice process, you can position on other
points in the program without disturbing the pragrnaath you were already tracing.

O] Choicepoints |

direction: forward

30 30 REGE =\= REG4 : TRUE [~]
36 36 MFELD < P"10" : TRUE
1 41 REG4 > 0 : TRUE

]
I [+]

| Goto | | Delete | | Clear | | Cancel |

The list of the choice points passed in a one-choice forward search.
Each line records the condition and the TRUE or FALSE decision.

With the DELETE button you may delete the choicénpat the bottom of the list. This means
resetting a path chosen. When you have “reset'Wwhig you can choose an alternative path with a
GOTO (cursor on the last line in the list box) antSelect”.

The CLEAR button deletes all choice points.

8.8 Navigate / Exclude lines

You canexclude lines from the screen representation in orderdb g better overview of the
assembly program. Where lines are “excluded”, a4sluped bar is shown.

Ed reASkgen Demo EA=]|
File HNavigate Control Flow Data Options Window Help

Bd Source View of UMSATZ: 1 i
9 HVI BITSCHC, X'00° Bitschia
10 re » » |SCHLEIFE EQU *

10 GET. . .]
11 r<|< <« < GET EINGAEBE, EBER

12 CH 4,=H'20"

13 r

22 T S WETTERT I uH

23 CLC MEREVHE , VNR

24 << EE WEITERZ

25 (BAL 14, VERETR

26 << B WEITERZ

27 (CLC MEREENE , KNR

28 << EE WEITERZ

29 [BAL 14 EUNDE

30 » » | WVEITERZ DS 0H

3l BAL 14, RUMPF

32 L < < B SCHLEIFE | |
rr o | [3|

You can exclude lines in several ways:

1. In the menu, select “Navigate / Exclude from....t0A dialogue window appears where you
can entefrom what lineto what line you want to exclude.

reASM version 2.5.1 / reASMgen version 1.5.7 33

For your convenience, the cursor line number anavailable, the line number of the selected
statement are displayed as default values in thieglie window. This way, you can enter the
line number range with one mouse click and a CTRL. +

Position the cursor on a GOTO statement or ontdnget label of a branch and type key
combination CTRL + x. The complete branch rangexiduded from being displayed on screen.
In the figure above, the cursor was on line 13 (@I RL + x was typed.

The same applies to a procedure’s return stateonetst header.

When you type CTRL + x while the cursor is not aglsa statement, an error beep is given.

. In the menu, select “Navigate / Exclude Levéliis level is the indentation depth of the arrows.

The outer arrows have level 1, the inner ones 2, 8ic. until the deepest level (nesting depth).
If you enter, e.g., “4”, all deeper levels will bemoved from the display. If you enter “3”, even
more will be excluded.

Resetting:

1.
2.

You may reset all exclusions by selecting “NawgaClear Exclusions” from the menu.

You may reset a single exclusion by placing thesauon the line immediately above the blue-
striped bar and typing CTRL +.

Lower-level exclusions may appear. If you have edelt e.g. level 3 and then restore it, then
level-4 exclusions may appear.

Exclusions are related to a singleurce view windowi.e., you may use different source view
windows and work with different exclusions in eaxte of them.

reASM version 2.5.1 / reASMgen version 1.5.7 34

9. Concepts

9.1 Computed branch targets

reASM must recognise an unambiguous control flow. Withexu unambiguous control flow no
useful data flow will result.

In aBR aBALR and similar instructions, the branch targets areexplicitly given but they are
addressed through register contents. The origioatept was thateASM tries to determine at
which branch address the register points (regestatuation). IfreASM cannot unambiguously
determine this, an error message was produced.

This exact algorithmic determination of the registentents faces the following problems:
It takes relatively much time.
» ltis very complicated.

* It may fail at any intermediate result that canbetinterpreted (e.g., when a SAVEAREA is
explicitly addressed — which is not unusual).

» Several sources for a register’'s contents may tnedfo
For this reason, a heuristic is used which rougldyks as follows:

* Every BR is interpreted as a return from a procedure, asasathe register fits to the
procedure header.

» If the line in which a register is used as a coraguiranch target has a comment beginning
with a "reference”, it is used as described below.

» Otherwise, register evaluation is attempted.
An example of using the reference instructise_jumptable:
Suppose register 11 is calculated in some way arvallyf points to an entry in a jump table
TABEL:

AH R11,ZHW
SLL R11,1
D15 BR R11 ref 227

TABEL DC A(LABELL)
DC A(LABEL2)
DC A(LABEL3)

The reference file contains the instruction:
227: use_jumptable('TABEL)

This way, you informreASM that the possible contents of register 11 canobed in the table
TABEL. reASM expands th@R instruction to three conditional branches to LABELABEL2
and LABELS3.

Jump tables may be defined in several ways. Inbiw/e example, it only consists of addresses.
The question is how many of the consecutive dattad#tions must be considered to belong to the
jump table. In the above exampleASM will assume the table to be ended when it sees a
statement that is no longer an address declaration.

When the table contains holes, or when table vabfeanother kind are found between the
addresses, you will also have to indicate the magghand the end of the table by a comment. The

reASM version 2.5.1 / reASMgen version 1.5.7 35

line with the table’s name must contain a referensé&uctiontable(begin) . The end of the
table must be marked witable(end) , which is to be placed in a separate commentdites
the last table element. Example:

TABEL EQU * ref 82
DC C'A 'S(ADR1)
DC C'AH ' S(ADR2)
DC C'W ' X'0000'
DC C'WA ' S(ADR3)
* ref 83

The reference file contains the instructions

82: table(begin)
83: table(end)

reASM takes account of the addresses ADR1, ADR2 and ARR® ignores the other data
declarations.

9.2 Procedures

When the lineRECH MVC AH is addressed as a procedued\SM separates this line into
three lines:

RECH MVC.....
MVC...
MVC AH

The first line is the procedure header, the seaomalremembers the register and the third one is
theMVC

A procedure can be called from several points engtogram. In the control flow, a procedure call
is like a branch to the procedure header, possibihy several points in the program.

With respect to the data flow, several consteltetioan be distinguished.
Suppose you want to search backwards fradh@for a field XYZ:

MVC XYZ,...
BAL 14,MYPROC

MYPROC EQU *
CLC XYZ,.

Suppose MYPROC is called from several points inptugram; the example shows only one call.
When control flow is followed backwards from theopedure headea]l calls will be found, and
from there the search goes on. That is, more tmenMWVCis likely to be found. When the
procedure is called from many points, the searth wdl branch highly.

The other constellation is as follows:

MVC XYZ,...
BAL 14,MYPROC
CLC XYZ,...

Suppose you search from t@& C backwards for field XYZ, XYZ isot referenced in the PROC
procedure and MYPROC is called from several pdmtke program. If the data flow would work
the same way as in the first example, then agaimynmd/Cs would be found. To avoid this, a
special treatment was necessary for procedurgbidrexamplereASM finds exactly onéMVC In

reASM version 2.5.1 / reASMgen version 1.5.7 36

the UMSATZ demo program you can try this: In ling51 select REG4 and run the O(utput)
function.reASM only finds three points — otherwise it would h&esn more.

9.3 Explicitly-addressed data

With an explicitly-addressed variable, both theebssgyister and the offset are specified explicitly,
e.g.0(1,REG5) . We also consider a DSECT data item as being @ipliaddressed, as it is
mostly used to address several different storaggitins at runtime.

For our purpose, we consider “normally” declaredialdes (symbolic addressing) to be fixed-
location variables, members of a large working a&jer Note: In case their base registers are
changed in the programg ASM will not take this into account.

Problems will now arise when the data flow functidnput / Output / Usage compare data items
that are addressed in different ways: is a vari@ileREG5) identical with variable XYZ which
was declared normally?

In a static analysis this question cannot be arevexactly, because it is not possible to tell
generally at what storage range REG5 points atment

Therefore we have to make assumptions hex&SM basically assumes that a fixed-location
variable isnot used as input or output for an explicitly-addrelsdata item®

But how is input / output of an explicitly-addredseriable handled? Variables are considered the
same when the register and the offset to this tesg@se the same. The second stop criterion of the
search is when the address register is assignaflia. v

In an MVCLthe registers are evaluated in a similar way aa BALR in order to assess what
storage range is operated upon. In case the fgistees cannot be evaluated unambiguously (e.g.,
when a table is being processed), a message is.give

9.4 Redefined and variable-length data

The Input / Output / Usage functions check whetrarot a variable is used in an instruction. This
check does not rely on the variable’s name bueatsuses the memory location plus the length of
the data item. This ensures that this check isheated by a redefinition.

Although with variable-length data the memory lomatis fixed, the length is not. The length is
contained in a variable and can have very diffevahies during runtime.
An example:

MOMO MVC FELD(0),FELD3

FELD DS CLS

The Input / Output / Usage functions require thrmaasumption regarding the length be made. The
length from the declaration is used (in this examp), and the message 310408 informs the user
about this.

Rationale: If we assume (as a compiler does) REE5 may basically point at anything, includingamally-declared variable like DBER,
then a corresponding data flow analysis in whidgh BBER were used as the next target, would beeratieless, because in that case all such
“0(1,REGb5)” data would be displayed. This is notiire with the intuitive assumption.

reASM version 2.5.1 / reASMgen version 1.5.7 37

9.5 Dynamic code modifications

Many assembly programmers have the bad habit offymogl code at runtime, e.g. to change a
NOP into a BNE instruction.

The most usual of these modifications are takemactount byeASM as follows:

 The modification is executed, the resulting stateimie re-interpreted (e.g. as a BNE
instruction) and inserted after the source staténmidns action is recorded in the log file as
e.g.: “Changing instruction ... to ...".

» Both statements are given a condition in which #acbws used, e.g.:if* switchTAB30

=1

* The modifying statement, e.g. an Ol, will be digpld as SwitchTAB30 := 1 ". The
switch is assumed to be initialised with a 0 vake the non-modified instruction gets the
condition ‘if switchTAB30 == ", and the modified one gets the condition
“if switchTAB30 ==

In case the target address of a branch is modifiedntime with a non-constant value, but with a
calculated branch address, we have a combinatiaymdmic code modification and computed
branch target. The explanations of page 35 hotHigcase.

9.6 SECTIONs

The assembler’s sections concept is not completelgielled byreASM, but only insofar as we
considered important: DSECTs. Every DSECT is titatean independent data region, everything
else as a big working storage.

For the Input / Output / Usage data flow functiah&, question must be answered whether or not a
DSECT variable DFELD overlaps a working storagdalde WFELD. This question is discussed
in more detail in the chapter on explicitly-addeztslatgsee page 37).

9.7 USING

With menu item Statement / USING you can displayWsING constellation for the statement on
which the cursor is positioned: which registers emerently used as base registers and which
registers are assigned to which DSECTs? This quesiprimarily important when using POPs,
PUSHs and DROPs, which are all taken into account.

For example, the display

REG10, REGY9, REG8->TABEL
shows that REG10 and REG9 are defined as basdemsgend REGS is assigned to the DSECT
TABEL.

Error sources: USING instructions are often hidolemacros.

9.8 EQU

EQUs can be treated in several ways. Firstly, EQausbe simply substituted literally — that is the
way the assembler-compiler works. That way, howes@me semantic information would get lost
that is expressed by the EQUs. Therei@&SM tries to avoid as much as possible substituting
EQUs. It only substitutes them when necessary, wlgen something has to be calculated. This
way, the possibility remains to re-interpret theUsQat a later stage, such aslamB EQU

33 as a constant with value 33.

reASM version 2.5.1 / reASMgen version 1.5.7 38

10. Description of supplied and generated files
For the PC administrator, only the two files REA&EMNY and REASM.PRO are important,

10.1 REASM.ENV: ENVIRONMENT file
This file configures system parameters for the &yountime.

The REASM.ENV or REASMB.ENYV file must be availabfethe directory from which REASM
or REASMGERB is launched (current directory). Wheis imissing, default values are used.

All parameters are in upper case, followed (witholanks) by “=" and the parameter value. Most
of the parameters present in the default file arly anportant for MS-DOS. Under OS/2 the
following parameters are used:

LOCAL andGLOBAL set the size (in kbytes) of two different stadBsth play a role in deep
recursions, such as with data flow search. A valu255 for GLOBAL and LOCAL will suffice,
even for big programs.

WIN95: The OVERFLOW parameter gives a filenametfer swap area of PROLOG. When the
internal data storage grows in excess of MAXPAGIES data are swapped to disk.

The MAXPAGES parameter sets the size of the storadee reserved for the internal PROLOG
cache.

Example of an ENV file:

GLOBAL=255
LOCAL=255
MAXPAGES=2048
OVERFLOW=TMP.IDB

Under MS-DOS, this configuration by means of REAEMY was very important. Under OS/2
and WIN95 it has lost its importance and is geteliamhited to defining the OVERFLOW name.

10.2 REASM.INI

This file is placed in the operating system directand remembers the last settings, e.q. the last
used font.

10.3 XYZ.IDB and XYZ.IDC: Internal database

The database of an assembly program processeutesl sh the two files XYZ.IDB and XYZ.IDC
and can thus be re-loaded in another session.

REASM.IDB is the initial database and is neededmstartingre ASM.

Like REASM.EXE, REASM.IDB is searched along thehga} defined by the PATH environment
variable.

10.4 XYZ.PRO: Company and program profiles

REASM.PRO is thecompany-wide profile. In particular, it must contain the pathave the ASM
files are to be searched, and (WwitASMgen) the path where the generated COBOL or PL/I
programs have to be stored. For REASMGEN.EXE, tbélp is also called REASM.PRO.

REASM.PRO is sought in the current directory odirectory \REASM”.

reASM version 2.5.1 / reASMgen version 1.5.7 39

In the example supplied, the different possibsitage explained in comments. The profile syntax
is PROLOG syntax (cf. page 46).

It is possible toset up a profile for every program, e.g. for the UMSATZ program the profile
would be UMSATZ.PRO. Such a profile is searchethencurrent working directory.

First of all, remarks regarding the program — imagent form — can be stored in this profile.
Example:

[* Contains an MVCL with table processing -> reASM prints a warning */
Secondly, definitions from REASM.PRO can be oveleid here.
Thirdly, special program-specific options can bétahed on or off in this file.

10.4.1 Options for reASM

path(asm, <path>) : The path in which the *.ASM or *.LST files are b@ found. Example:
path(asm, $C:\ASS\$).

path(copy, <path>) . The path in whichthe COPY files are to be foundly relevant
when the assembly program is read in source form).

start_label(<String>) . If in your programming environment a label is uggd where
program execution starts, you can make this lahelvk toreASM here. For example, a
label “START":
start_label($STARTS).

extern_label(<name>, <action>) : This specifies labels that are not to be usdtien

control flow analysis. This may be truely exterlzddels (or labels not included in the source
code, such as “ENDE” as a general end of programi},may be labels that are included in
the source but must be ignored.

The first parameter is the label name (a stramgl consequently placed between $...$). The
second parameter indicates the semantics and isféabend ” (abnormal end of program),
“exit " (normal end of program) otdress ”. Example:

extern_label($ENDES$, exit).

bell_level(<level>) : Level from which a signal tone is produced whigading in
batch. The levels range from 0 to 16 and are expthin REPORT.ARI.

info_counter(<Integer>) . In batch processing, frequently screen messggesaa which
show the progress of the reading process. “Infonttiindicates how often these messages
are to appear. If, e.g., you want the messageppeaa after every other line (not counting

comment lines), you specify:
info_counter(2).

10.4.2 Options for reASMgen
In addition to those fareASM, reASMgen has the following options:

path(gen, <path>) : The path where the generated code is to be st&emple with a

relative path:
path(gen , $COBOL\$).

reASM version 2.5.1 / reASMgen version 1.5.7 40

language(<language>) . This indicates what language is to be generdtadguages
supported so far are COBOL and PL/I. A parametey beadded to indicate the language
dialect; the effects of this dialect must be pragreed into GEN.ARI. Examples:
language(pl1(saa)).
language(cobol(ibm)).

pass(<name of a pass>, <yes|no>) : This controls which analysesASMgeb must
execute. When e.g. analysing the table heuristissttoo much time, it can be switched off
using

pass(tab_hyp, no).

editor(<program name>) : When program parts are generated fr@ASMgen, they are
loaded into an editor. With this option you speciiynich editor is to be launched. A

Windows example:
editor(NOTEPAD").

generate_asm_comment(<parameter>): This option allows you to specify in what

extent the generated COBOL or PL/I source is tdaiarreferences to the original assembly
statements. The parameter “linenr” causes the tinmbers of the original assembly
statements to be included in the generated solilh@eparameter “asmline(<string>)" causes
the complete original assembly statement to beided as comment in the generated source.
To ensure that these comments can be simply remaftedthe conversion is complete, they
are marked with the string you specified. Example:
generate_asm_comment(asmline(asm)).
causes line 125 in the UMSATZ program to genetfadollowing COBOL lines:

125 *asm LA REG5,TABVTR

125 MOVE 1 TO REG5-TABVTR-ix.

In this case, both parameter “linenr” and par@m&smline” are switched on (they can be

combined).

right_margin(<integer>) : This option sets the right-hand column limit tbe generated
code. It works both for COBOL and PL/I generatiBor PL/I, the left margin is fixed at 2.

decimal_point(<parameter>) . This defines the decimal character in the editasks.
Values allowed are “comma” and “point”.

substring_limit(<integer>) : This option controls whether a NAME+OFFSET isb®

generated as a substring (in COBOL.: reference noatiibn) or as a redefinition. When in
the program the same NAME+OFFSET occurs more dftan the limit specified in this
option, a redefinition will be generated.

literals_as_constant(<parameter>) . With this option, literals are removed from the
procedure division and will be accessed via a ggadmame.
The parameter “hex” means that all hexadecineddis are removed.
The parameter “char” means that all characterdis are removed.

10.5 STMACRO.ARI and MACRO.ARI: Macro definitions

reASM does not process assembler macro statements. It is bettéirectly describe the macro
semantics.

A more elaborate explanation is found as commetiterSTMACRO.ARI file itself.

The STMACRO.ARI file contains macro definitions that are not riestid to one company. They
are updated by theeASM manufacturer. Do not modifsTMACRO.ARI unless absolutely

reASM version 2.5.1 / reASMgen version 1.5.7 41

necessary (e.g., when a macro contained in itfinete differently in your company). In this case
you have to make your changes again upon everyeipd&TMACRO.ARI.

The MACRO.ARI file is intended for company-specific macros. Yaaate this file as a normal
ASCII file. In it, you declare your company-specifmacros, according to the examples in
STMACRO.ARI. The installation does not contain a MACRO. AR to avoid overwriting your
own version.

The STMACRO.ARI and MACRO.ARI files are found iretieurrent working directory.

When reASM finds a macro that is not declared in STMACRO.A&RIin MACRO.ARI, it
assumes the simplest form (no parameters, no ses)a@ind proceeds. Nevertheless, certain
macros should be declared from the beginning. Taesewith decreasing priority:

» Macros representing a procedure call, a procedemddr or a procedure end.

* Macros that modify program flow, i.e., macros camteg a branch. When such a macro is
not declared, the branch will not be containedhi ¢ontrol flow. With many macros this is
not a problem, e.g., with the exception conditiaisshe DFHBMS macros. The branch
targets are not part of the programme’s mainstrdarh,handle an exception, which may
then be seen hgASM as “dead code”.

Macro branches that are part of the regular cofitvel, must be declared.

 Macros that represent data declarations. They ay wimple to declare, because
STMACRO contains a class for this.

* Macros that set registers.
A similar case are fields that at program startta@ionthe address of some storage region

which is then assigned to a register. This facttrhasleclared in the profile, e.g.:
init_value($CWALOTABS$, address(TAB_AREAS)).

10.6 XYZ.ASM, XYZ.LST: Assembler source, assembler listing
Contains the S/370 assembly code.

Avoid editing XYZ.ASM files on a PC. If you have tib so, be sure not to use the TAB key, or
more accurately, not to insert any ASCIlI TAB chaeadnto the file because all characters below
hex 20 are treated as control characters. Sometitees declaration like

DFHERROR CHAR (1) INIT (1

has such an ASCII character as init value, whickiéis processing even in a comment line.

Also be sure that after transferring a listing fibethe PC there it does not contain any hex O byte
(which on the PC may be interpreted as an endi@fark).

Basically, any file extension can be used for sewnad list files that are to be prepared; however,
there has to be a file extension. It is recommendese ,ASM* for source files and ,LST* for list
files.

10.7 XYZ.REF: Reference file?

This file contains further possibilities to influsmthe semantic interpretation and the generaton b
reASMgen. In the comment part of the ASM or LST files, refece numbers are inserted; in the
reference file commands foeASMgen can be entered under the corresponding referanober.

Referencefile syntax

2 The most recent explanations on this topic cafobed in the REF.REF file.

reASM version 2.5.1 / reASMgen version 1.5.7 42

The filename is <program name>.REF, e.g. W200.REF.
A reference starts with <number><colon> and endk wiperiod.
The reference numbers have to be ascending, “hatesillowed.

A reference may contain more than one instructorttie ASM statement; they are separated by a
semicolon.

The instruction is a command, e.g. “procedure_patt@ultipleentry)”, or setting an attribute, like
type, array size, width, etc.

“st(_)” indicates the complete ASM statement. “ogl@nd “op2()" indicate the operands.

Only tokens beginning with a lower-case letter @ased. Upper-case letters must be quoted, e.g.
'B100', or placed between dollar signs, e.g. $B10Q#nbers are also allowed.

“message(<message no.>, <parameter>,...)" is fmgedassifying and controlling messages. The
first parameter is the message number, any nunflparameters may follow.

The PROLOG syntax rules apply.
Thesemantics of thereferencefile can be read in the REF.REF file.

10.8 XYZ.LOG: Log file

In every analysis of an assembly program, a lagiflgenerated which contains several kinds of
messages. The type of the different messages caorbbgured in REPORT.ARI. The log file
contains informative messages, such as the tine fos¢heprocessingreferences to problematic
points in the code, warnings and errors.

The most important references to problematic code a

+ dead code: i.e. unreachable code.

reASM analyses the programme’s control flow. The “deade¢ message is generated when
a statement is cut off from the control flow.

Sources of inappropriate messages:

* When computed branch targets are not correetipgnised.

* When a macro contains a branch to a label, baintacro has not yet been declared.

» Branches that violate the procedure region, eandires from one procedure into another. A
procedure starts at its procedure header and ¢nddast RETURN.
Sources of inappropriate messages:
* When a RETURN is not correctly placed with redptedts procedure.

* When a RETURN cannot be matched with one procedut is used for several procedures. If need de,nyay solve this by an
appropriate instruction in the reference file.

* When code is “dangling” outside a procedure: atgymps to a point after the RETURN
and then back again to a point just before the RENIUWhether or not the message is
appropriate in this case, is a matter of opiniothdugh according to control flow the code
is unambiguously connected to the procedure, thiaat easily seen when reading. The
programmer may have saved a few minutes by inggetiiis piece of code after the
procedure, but causes unnecessary problems fonamyse who reads the program

» Dynamic code modifications.e. at runtime statements (e.g., a NOP) mighhbdified.

reASM version 2.5.1 / reASMgen version 1.5.7 43

All these points represent sources of maintenamo® and should be cleaned up in view of
preventive maintenance.

10.9 XYZ.DBR: Import database record

After the assembly program has been processeatftabase record (XYZ.DBR) is generated
which contains basic information on the program atates the number of problematic code
points. The purpose of this database is that itbkmimported into a dBase or SQL database, so
that a history database can be built with objeatiagntenance information.

The basic data have the following format (unleshcated otherwise, all fields have 8 positions;
each separated from the next field by a field sspay.

* Program name
» Date: 10 positions, format: YYYY-MM-DD

Ifthe input was a list file, the list file date stp is used. This allows a better synchronisation
with other data, e.g. when the program is transteto the production area.
If the input was a source, then the calendar datised.

* Number of functional (executable) instructions.
This is a measure for program size. Comments atad dkclarations are not counted. This
number is often called FLOC, as it is an improvenmnthe LOC number (LOC = lines of
code).

* Number of data instructions (DS, DC, ORG, USING] #re like).
* Number of comment lines.
+ Number of labels referenced in branches.

» Branch nesting depth.
For at least one point in the program the contimlfis so complex that branches must be
displayed with this nesting depth. This may, howetse a local point and may not indicate
an overall program complexity — that is coveredh®/next number.

* Sum of nesting depths.
This is a measure for the control flow complexifytlee entire program. This corresponds to
the maximum intersection number described by ChE®7&) in an article inlEEE
Transactions on Software Engineering. This article also presents empirical values ow ho
the control flow complexity, when measured this wenfluences theroductivity of the
programmers.

Sources of discontinuous numbers:

In the profile, labels are declared theASM must consider as being external. They are therefot included in the control flow
nesting — this is intentional. With this, and witie option return_lookahead, you strongly influettoe value of the nesting depth
number. Be sure to first correctly set the optifmrgprogram XYZ, before you begin to collect thesenbers for XYZ. Also be sure
that the options are not changed afterwards.

From these basic numbers, further numbers can ideede Especially the SumNestingDepth per
FLOC is a useful metric to compare different progsa

Then the number of problematic code points followih 8 positions each. In the REPORT.ARI
file you can configure which numbers you want tpesgr. In theeASM configuration supplied as
default, these are (a more elaborate explanatioeach number is found in REPORT.ARI):

* Number of dynamically changed statements (310501)
* Number of (supposed) dead code blocks (310502)

reASM version 2.5.1 / reASMgen version 1.5.7 44

* Number of branches that violate procedure bounsl8£0203)
* Number of overlapping procedures

In the case ofeASMgen, DBR will contain more metric numbers, which aspecially useful to
assess the smooth convertibility to a 3GL.

10.10 REPORT.ARI

This file contains the texts corresponding to thgefile messages. If you prefer other message texts
or want to suppress a message, you can do scsifilhiWhere necessary, a message is explained
in a comment. For better readability, you get amaex of these comments in REPORT.TXT.

In particular, it contains the reference textshi® problematic code points. Which ones are counted
and are output to XYZ.DBR, can be configured here.

10.11 REASM.HLP
This file contains the help texts.

REASM.HLP is the help file for REASM.EXE, while REEMGEN.HLP is the help file for
REASMGEN.EXE.

WIN95: REASMGEN.CNT contains the help contents.

10.12 XYZ.LRE: List file

The processed assembly source, which above allsskimavindented control flow arrows, can be
printed to a file by means &1LE / PRINT or MERGEPRINT The name of the file thus generated
will be <program name>.LRE.

10.13 XYZ.RLH: Restruct file

When the optional module foestructurings called up, the restructured representatiomuipud to
this file.

10.14 XYZ.TMP: Temporary file

Used for outputting temporary texts.

reASM version 2.5.1 / reASMgen version 1.5.7 45

10.15 PROLOG files notation (*.ARI, *.PRO and *.REF)
In these files, the PROLOG syntax must be followed:
e Comment is to be enclosed between /*...*/, or betw84” and end of line.

* PROLOG clauses look either as follows:
abc(...) :-
defg(...),
hijk(...)
or purely relational:
abc(.......).

The left parenthesis must immediately follow thentifier, without a blank.
The PROLOG clause is always terminated with a plerio

» Everything must be lower-case. Upper case letterd@abe enclosed between dollar signs
(e.g.,$LIEFERKZS$). PROLOG is case-sensitive, e.§Namelists and $NameList$
are different.

Capitalised names without dollar signs are integardoy PROLOG as variables. In case of
incorrect use, this may lead to unexpected prograecution. A single underscore is a blind
variable, a variable without a name.

Examples:

options(substring_limit, 2).
extern_label($DUMP$, abend).

When you launch REASMB.EXE, the files MACRO.ARI etge read. Possible PROLOG syntax
errors are flagged at this moment. This would lasKollows:

SYNTAX 9 Right paren not found where expected.
'RSRBR'('Self', return_def(set, 'REG15',[0 D'STATUS' ==
'OK', 4 :'STATUS' =="'EOF']) <<. >>

Indeed a closing parenthesis was omitted in theBESReclaration. The correct declaration looks
as follows — correctly indented:

'RSRBR'(Self, return_def(set, 'REG15',
[0: $STATUSS =="OK’,
4: $STATUSS$ == 'EOF'
1))

reASM version 2.5.1 / reASMgen version 1.5.7 46

11. Appendix

11.1 Storage requirements and performance
reASM runs on an IBM-compatible PC under OS/2 2.11 aB8PWarp, as well as WIN95.
Further information can be found in the Environmidetchapter.

11.2 Assembly-language subset

reASM’s purpose is to improve the understanding of consrakassembly-language programs.
Commands in relation to systems programming are inoluded, nor are floating-point
instructions. Similarly, bits and half-bytes aremiost cases ignored.

Macro instructions are ignored. Instead, macros lmardeclared in a programmable interface..
With macro parameters, syntax analysis treats tws@cutive commas as one, so that position
parameters cannot be recognized. As the macro sixpais not processed, but only the macro
call, a correct interpretation of the macro pararseis not always possible.

The following list shows the language subset axgs®ed byeASM. The abbreviation “370-
ASM” indicates the behaviour of the IBM 370-asseanlgompiler.

Restrictions with storage operands:
when in an explicit addressed operand instead iojUREGO literally the parameter is simply omittedg. ST
9,(,)), thereASM syntax analysis interprets this as an error, Wwiiks 370-ASM inserts a zero.

Restrictions with literal lists:
Literal lists are processed correctly only wititandLM and in fact only in such a way that the DC arelltM are
split up into as many single instructions as tteeeliterals. E.g.,
DC A(ADR1,0,ADR3)
becomes
DC A(ADR1)
DC A(0)
DC A(ADR3)

On the other hand, with
MVC FELD(6),=P’00,000000’

only the first one of the two literals is processed

All instructions:
For every instruction, the condition code, the oarftow and input/output from variables is modellle
Both for data declarations and for executable irsitons an internal location counter is maintainathen a listing
is used as input, the location counter from thiinlisis used. An “*” in an operand is interpretedrelation to this
location counter, When a calculated address hdslsb, a lower-case FILLERxx name is attached.
No difference is made between 24-bits and 31-litfressing mode. E.g., BAL and BAS are treated idelty,
and LA is treated as if it would set the entireistay.
Setting and reading the program mask is not madielle
With arithmetic instructions, sign, overflow andmgaare not modelled. Shift instructions are tredike arithmetic
instructions.
The instruction semantics is modelled in a PL/&liway, which is called PLH. In PLH too, NOP means
operation”.

AP, AR, A, AH
Semantics: addition

AL, ALR, SL, SLR CL, CLR
These instructions are treated the same way aothesponding signed instructior8l(like S, SLR like SR etc.).
Carry is not modelled.

AMODERMODE
Ignored.

reASM version 2.5.1 / reASMgen version 1.5.7 47

BAL, BAS
Semantics: “call”.
The label is transformed into a procedure header.

BALR BASR BASSMBSM
Semantics: “call”’, when the register is non-zerd ean be evaluated.
When the register is zero, the instruction loagsréyister with the next address.

BCT, BXH BXLE
The instruction is split into one that decremehtsregister and one with a conditional branch.
BCTR

When the register is non-zero, an attempt is madwdluate it.
When the register is zero, the instruction onlyrde®nts the register.

B, NOR BH, BL, BE, BNH BNL, BNE BQ BP, BM BNR, BNMBNZ BZ, BNO
Except withB andNOR an instruction is searched backwards in whiclcthlition code is set. The variables from

this instruction are inserted into the conditioraBple:
CP OP1,0P2
BNE LABEL

The BNEinstruction is assigned the semantifs<‘=\=Y then goto LABEL ". X will be replaced bypP1
andY by OP2 TheCPinstruction is assignedMOP

The condition code itself is not modelled.

Overflow is not modelled.

BR NOPRBHR BLR BER BNHRBNLR BNERBOR BPR BMRBNPR BNMRBNZR BZR BNOR
As far as possible, the register is assigned tmegglure with a return register.
The semantics of, e.g., BNER is théhX =\=Y then return ”
The other possibility considered is a branch taldhen it is not dynamlcally modifiedeASM may possibly
recognise it.

BC
An attempt is made to derive a mnemonic from thekmb will, however, not be unambiguous,

BCR
Ignored.

CLC CLI,C,CHCRCP
Semantics: no operation (none).
Setting the condition code is not explicitly moeell(e.g. by setting a flag variable). Instead, »plieit condition
is formed together with the corresponding bransirimction.

CLCL
Ignored.

CLM
Compare, with the register split up the same wayigsSTCMandICM.

CNOP
Ignored.

COPY
Is executed in case no listing file was used astinp

CSECT
The 370-ASM section concept is not emulated. Mgreciically, reASM cannot handle in a clever way several
CSECT that have the same label. Fro@SECT a procedure header is derived.

CVB CVD
Assignment.

D, DP, DR
Division. Only integer division is modelled. Segithe remainder is not modelled.

DSECT
Treated in a similar way as explicitly addresset (. page 37).

DS
Data declaration.
Syntactical restriction: As a duplication factonlyoa number will be accepted, not an expression.

reASM version 2.5.1 / reASMgen version 1.5.7 48

The alignment that 370-ASM performs with types likd=, etc., is not taken into account.
In the context of executable code, the semantia @éclaration like NAME DS OH " is a label with a “no
operation”; however, when the length is greaten thero, it is exit(abend) ”

DC
Data declaration with an initial value. Otherwiseated likeDS

ED EDMK
Semantics: assignment.
With EDMKsetting REG1 is not taken into account.

END
Ends an assembler source.

ENTRY
The name is entered.

EXTRN
An external name is entered.

EQU
Cf. chapter oreQU

EX
Setting the condition code, forming the conditiord @he input/output behaviour are redirected to dtadement
designated by EX. In contrast to 370-ASMASM does not OR the register with the byte, but onlystitutes the
byte value. A useful conclusion is only found whie statement designated by EX has no further degoé
freedom, e.g., when its operands are not expliailigressed.
Cf. the chapter on variable-length data.

EXEC CICS andEXEC DLI
The syntax of these commands is accepted. Howtheesemantics must be declared in STMACRO.ARI. Wéden
listing has been read — then BEEC CICS command is commented out and instead ofdF&IECALLis inserted
in the code — thEXEC CICS command is uncommented and BieHECALLis ignored.

L,LH LM LR, LTR,IC,ICM
Semantics: assignment. Wit@ , ICM, STC andSTCM the register is treated with a granularity of daye, with
the other instructions with 4 bytes.

LA
Semantics: 370-ASM only loads an addresASM differentiates whether a register addition or arass
assignment is involved.

LCR
SemanticsOP1 := 0 — OP2
LNR
SemanticsOP1 ;= 0 — abs(OP2)
LPR
SemanticsOP1 := abs(OP2)
LTORG
Ignored. In the listing, the lines with literalsattfollow, are ignored.
MACRO, MEND
This embodies a macro declaration in 370-ASBASM ignores the lines betwe@dMACRGind MEND because

reASM does not interpret macros. Instead, the macroatipes must be declared in MACRO.ARI. Whether dr no
a macro expansion in a listing is to be read, ¢smlae specified in MACRO.ARI.

MP MRM MH
Semantics: multiplication.

MVCMVI
Semantics: Assignme@P1 = OP2 .
Next, the operand OPL1 is analysed to find out wévatirepresents data or executable code.

MVCL
An attempt is made to evaluate the registers.désssful, i.e., when an unambiguous value can teediefrom the
register, this value is used as a length or anamgkeaddress. Three instructions are inserted:
— fill with a padding byte;

reASM version 2.5.1 / reASMgen version 1.5.7 49

— setting the source register;

— setting the target register.

Decrementing the two length registers is not mediell
A condition code is not modelled.

MVNMVZ
A semantics is only assigned when the operands déssegth of 1.
OP1 is analysed to find out whether it represeata dr executable code. In the case of datatested whether or
not setting a sign in packed or unpacked datavidved.

MVO
reASM does not assign a semantiessASMgen partially assigns a division.

NR NI, N,NC
Semantics: AND-operationbftand(OP1,0P2) . Is reduced toM\VZor MVN when the half-bytes are 0 or F
respectively.

OROI, 0 0C
Semantics: OR-operatiorbitor(OP1,0P2) ". Is reduced toMVZor MVN when the half-bytes are 0 or F
respectively.

ORG
prepares a data redefinition.

PACK
Assignment.

S, SP, SR SH
Semantics: subtraction.

SLA, SLDA SLL, SLDL
Semantics: Multiplication by a power of 2. The sigmot modelledSLA andSLL are treated identically.

SRA SRDASRL, SRDL

Semantics: Division by a power of 2. The sign ismodelled.
SRP

Division or multiplication
START

Indicates the program starting point.

ST, STH STM STC STCM
Semantics: assignment. WB8TCandSTCM the register is modelled with a granularity oédoyte.

™
Simultaneously testing several bits. Is represeatea condition with AND and OR operations.
Only works in co-operation witBOandBZ, not withBMandBNM

TR
Semantics: translate(string, Tablein, Tableout).

TRT
Semantics: two standard cases are modelled:
a. searching characterséarch_char(_,_)
b. testing against a given contents of a fieldlidwed_char(_,)
reASM tries to derive these two cases from the tabléadsiion. This process is restricted insofar as just one
interpretation of the statically declared code,lstl870-ASM dynamically searches the table duringime.

UNPK
Assignment.

USING, DROP, PUSH, POP
Cf. the corresponding chapter.

XR XI, X, XC
Semantics: When both operands are equal, set atvidue. Also, the pattern “Exchange of two fields”
recognised and represented while an auxiliary felgenerated.

ZAP
Assignment.

reASM version 2.5.1 / reASMgen version 1.5.7 50

TITLE , EJECT, SPACEPRINT, NOPRINT
Ignored.

11.3 Error messages
There are several sources of error messages.
1. Error messages from the ASM syntax analysis

A syntax error messages consists of two parts:

E . syntax error
E : Ol TWASNTWAFELD

The second line shows the incorrect assembly fivee}”” indicates the error position.

In the example above, the error is not caused bityfaode, but by the “8” character, which
originates from a file transfer error. The syntarlgisis cannot recognise a valid name.

In a DS statement, the syntax analysis cannot atelan expression used as a duplication factor.
An example:

DS (X'C8'-*+DFHCSABA)C
This line is syntactically correct, btd ASM cannot evaluate it and produces an error message:
error: can't analyze X'C8'-*+DFHCSABA as dimension

Instead of the compound expression, the syntayseraproduces a value of 1 as a repeat factor,
so that the analysis can proceed.

When a listing is read, tHeEXEC CICS is commented out and the expanded call is insantéue
code.reASM produces th&XEC CICS command as if it were not commented out. In case
DFHECALLfollows — i.e., theEXEC CICS command was actually commented out in the source
code — th€&eXEC CICS production cannot be undone and the syntax amaigperts:

reASM reactivated EXEC CICS/DLI call

2. Error messages from C subprograms

The control flow arrows are indented in a C subpaoythat uses a fixed-size storage for this
purpose. When this storage size is insufficiengm@ar message is produced:

pflow_add(.........)
In that case, you may order a version with a la€storage.

The GOTO nesting depth is not limited. Up to a ingstlepth of 16, the arrows are kept one blank
apart; if the nesting depth exceeds 16, the armWde placed at a closer distance.

The error message “not understood”, as in
S : not understood sendput DSECTinsert_left(~510F54 ,~510F50)

is an error in the object-oriented processing artd be reported to the manufacturer.

3. Error messages from the PROL OG engine

A PROLOG syntax error message looks as follows {4e£2):
SYNTAX 9 Right paren not found where expected.

Processing error messages look as follows:

reASM version 2.5.1 / reASMgen version 1.5.7 51

ERR 103 Database error

The most importing errors, with explanation, are:

ERR 103 Database error

An error occurred during a database access. @fiererror will occur if an attempt is made to
store a term larger than the 4K page size. Alterelyt check for bad database reference or
malfunctioning disk.

ERR 108 Error writing a page to disk - disk probabl y full
The disk to which writing is attempted is full.

ERR 212 Not enough global stack

In most cases an internal loop of the program.

ERR 214 Error while saving database

Not enough room to complete save. Since save duteemove the old database until a new one is
created (hence a “safe save”), there must be tivesize of the database available on diskette.

ERR 221 Error allocating database memory - term too big

A PROLOG term exceeds a size of 4K. In this casempay order another version of treASM
and include the assembly program that exceedéirtiits

4. Error and informational messages from REPORT .ARI
These look as follows:
W 311401: taking DFHTCTZE as unknown macro

All message numbers from REPORT.ARI begin with ar®l have 6 digitsteASM-specific
message numbers begin with a 4. The messages RERORT.ARI file are sorted in ascending
order; an explanation of every message can be foutidt file.

reASM version 2.5.1 / reASMgen version 1.5.7 52

12. Optional restructuring module

With this optional module, you can restruct the goam’s control flow range-by-range. The
restructuring eliminates all branches — excepthose branching to points outside the selected line
range. Branches are transformed into if-then-edsestcucts or loops and an output in pseudocode
form is produced.

When the menu item “Statement /Restruct contral/fls selected, a prompt window appears in
which you specify from what line to what line yoamt to do restructuring. When restructuring is
to began at program start, then enter zero as “firoeh.

Depending on control flow complexity, there are itsnto the size of the line range to be
restructured. Exceeding this limit causes the @nogto abort.

For the program semantics to be preserved in thigucturing process, it is often necessary in
loops to temporarily store a condition in a switdtis is done at the point where there was
originally a branch with this condition. Betweernstlpoint and the point where the condition is
used in a structured construct, there are sevieed bf code, which may change the values of the
variables involved in the condition. Therefore, doadition must be temporarily saved in a switch.

Output is sent to a file with extension RLH. At thedt margin, the original line numbers are
printed, so that the origin of the line can be s@dre switch generated also contains the original
line number as a part of its name.

* The starting statement of the line range you seteatust be reachable from the program
starting point via a control flow path. This doex hold for areas that turned out to be dead
code or show other control flow clarity flaws. Timessage

“is not basic block”
is caused by such flaws. The message
“W 310903: Line xxx no control flow connection toogram start”

results from a more strict check than the dead aduzk. This message shows that the
control flow is discontinued and causes the neddinot to be included in the restructuring
process.

» Start and end of the selected range may be extdandbd next branch statement.

Beginning at the starting statement, those statesvaer included in the restructuring process
that are in the line range selected and that caredehed via a control flow path from the
starting statement. More specifically, this means:

No branch from outsidethelinerangeisallowed to jump into that linerange.

When a branch jumps into the line range, then tuasgparallel control flow paths lead into
the selected range. The restructuring processmgriake one path into account.

Example: When in the UMSATZ program you selectdi@&-36 for restructuring, only lines
27-29 will be restructured.

When lines 27-36 have been excluded from screeiagisvith theexclude commandyou
see that in this case two branches point intortnge:

reASM version 2.5.1 / reASMgen version 1.5.7 53

Esd reASMgen Demo

File Havigate Control Flow Data Options Window Help
Ead Source View of UMSATZ: 1
23 + | CLC MERKYHR, VHE:- -
24 <4 EE WEITER2 Ij
25 I— BAL 14, VERTR J
26 <4 B WEITER2
27 I [mae MEEKKHE_ EHE
k{3 ED DEER+44(TE) AWISTHE
37 MVI DEER+56,C' %'
38 MVI DEEE, LINES1
39 FUT AUSGABE, DBER bl
IR el [bl

One branch (the central one) leaves the line ranteat will not disturb the restructuring

process.

Anotherexcludeexample shows how a branch from below enterstiv@dine range and how
a branch leaves the range:

Source Yiew of UMSATZ: 1

5 UNSATZ CSECT [path:0__|Geom +
3 LA 3.

7 LA 4.0

VH . AP WISIME =P'["

a1l T BAL 14, KUMFE

32 Le ¢ ¢ B SCHLEIFE

33 *

34 »» » » |EOF1 L5 0H

35 MVC DEERE+42(12) MASKE

36 ED DEERE+42({12) ZWISUHK =
[EOEE e | [3]

The exclude command therefore shows rather quigkhether or not a line range is
appropriate for restructuring. Unfortunately you dot see all branches that leave the
excluded range: when at the left end a “goto” arppagses by that starts far above the
excluded range and ends far below it, this scregplay does not show whether or not an
arrow from the excluded range joins this long-dist&abranch.

A special feature of the restructuring algorithnthigt not all backward branches are transformed to
loops, but only the “real ones”. An example wittothackward branches from a real program:

1567
1568
16569
1670
1571
1572
1673
1574
16756
16576
1677
1578
1579
1580
16581
16582

is transformed to:

<
> > > >|> 1806
<€
¥|> ¥ >|>|> IBD8

I
I
I
I
I
L

*

reASM version 2.5.1 / reASMgen version 1.5.7

MUL
CLT
BHE
CLT
BHE
CLT
BHE
B
01
B
01
B
01
HUT

PUT

BITSCHC, X' 0B’
FRAMEKZ ,C*
IB10U
0sSTKZA,C" "
IB12
CHUBKZA, G’
IE14

IB145
BITSCHC, X’ 60’
IBOG
BITSCHC, X' ap’
IBO8
BITSCHC, X' 20°
BITSCHC+1,C" *

AUSGABE]L , FAHRDT1C

54

1567 BITSCHC :=low_value
1569 if FRAMEKZ =\=C""

then
1575 BITSCHC := bitor(BITSCHC, X"80")
1571 if OSTKZA=\=C""

then
1577 BITSCHC := bitor(BITSCHC, X"40")
1573 if CHUBKZA=\=C""

then
1579 BITSCHC := bitor(BITSCHC, X"20")
1580 BITSCHC+1:=C""
1582 write(AUSGABE1,FAHRDT10)

reASM version 2.5.1 / reASMgen version 1.5.7

55

13. User interface extensions for reASMgen

13.1 Data declaration hierarchy

Under “Data” you find aeASMgen-specific menu item “Data decl hierarchy”, whicloguces a
hierarchical representation of the data declaration

=] Data Decl Hierarchy of Working Storage J

—C=—EBER 700 80

L —fillerl?3 700 80
>S54 700 1
—_>VNR 701 3 tvpe: char
—_KNR 704 5 tvpe: char ||
—_2ARTBEZ 709 20 twpe: char

)

C_2THMS 729 6 type: num
o >fillerl?9 735 45
—C=Tfillerl?3-0 700 unknown length
o >fillerd 700 22
__EBER-22 722 2 type: dec
—__—>DBEE 780 133 tvpe: char
—=fillerl80-1 780 unknown length
—__>DBEER-132 780 1 twpe: char
< >DEER-1 781 132 twpe: char
—C=Tfillerl80-0 780 unknown length
—>fillerd 780 42
o >DEER-42 822 12 twype: edit
—C=Jfillerld0 780 unknown length
o >filler? 780 56
__>DBER-56 836 5 type: num

12

L 5 tywpe: dec
__>TH 925 5 tvpe: decV
F—C__2ZWISUMY 930 5 twpe: dec

|4

IR

The data item name is displayed, as well as ary aiz& in square brackets, the storage address,
the length and the type as assesseghAgMgen.

The binoculars button searches for text within theplay. In the edit field, you specify the
beginning of a name, e.g., “ums” (the search i®-tasensitive). Searching starts at the current
cursor position, and when the beginning of the n&rfeund, the cursor is positioned at it. In the
above example, “ums” was searched starting atdpe When the binoculars button is clicked
again, the search continues from the cursor posito “UMSPK-0" will be found in the next line.

The “Print” button allows you to print the dataseveral formats:
» Hierarchically, much like the graphical represenotain the window

* As a flat DIFF file: this format allows the assemprogram storage format to be compared
with that of the COBOL program. The assembly progrstorage layout is output in the
following format:

1. the field name;

2. array size, if any, in square brackets;

3. the storage address of the beginning of the field;
4. the field length.

» The data declarations are generated in workinggéformat.

 The data declarations are generated in file sedimwmat (not yet implemented). The
difference between these two formats in COBOL #$aREDEFINES clause:
in working storage format, REDEFINES clauses al@aadd at level 1, while in file section
format the redefinition is simply realised by a n&tart of level 1.

13.2 Generate statement(s)

Under “Control flow”, you find menu item “Generas¢éatement”. Like “Display”, it refers to the
cursor position (the current statement).

In order to allow you to simply transfer the textthe clipboard, it is shown in an editable field.

reASM version 2.5.1 / reASMgen version 1.5.7 56

With menu item “Generate statements” you can h@A&SMgen generate a series of target
language statements. The text generated is writea file XYZ.TMP (a previous version of

XYZ.TMP is overwritten) and this file is loaded enéin editor. The name of the editor is specified
in REASM.PRO.

These two menu items only generate executablenstatis. Data declarations can be generated
from the “Data decl hierarchy” window.

13.3 Restructuring
UnderreASMgen, restructuring does not generate pseudocode BubPCOBOL code.

reASM version 2.5.1 / reASMgen version 1.5.7 57

14. Index

A N
AP 47 Nesting depth 44
C @)
Condition 12; 15; 35; 37; 48 Offset 12
Control flow 12; 13; 24; 28; 29; 34; 42; 43; 47; 5B; 56

P
D

PLH 47
Dead code 27; 42; 43; 53 Procedure 13; 24; 34; 35; 42; 43; 47, 48
DS 49

R
E

REG5_1 3 12
EQU 27; 35; 37; 49
EXEC CICS 49; 51

S
M STM 50

Storage offset 15; 17; 36; 56
Macro 17; 27; 41; 42; 46; 49
Memory location 21; 36

Message 310408 36 Z
Message 310903 53
MVCL 50 ZAP 51

reASM version 2.5.1 / reASMgen version 1.5.7

