

reASMgen

 The Transformation of Assembler
into

COBOL85 or PL/1

1 Introduction
In the transformation of Assembler into a 3rd generation language (3GL) a gigantic range of
problems has to be considered. At the one end of this range are the obvious 1:1 transformations,
e.g. in PL/1
 AP FIELD,SUM
becomes
 FIELD = FIELD + SUM
In the target language there is a 1:1 congruent construct. At the other end of this range are
assembler constructs which even with the best of analysis cannot be automatically transformed
into a 3GL language. Examples are operating system code and operating system macros.

One is faced with the question of how to determine which end of this range a given assembler
program belongs to. Unfortunately this cannot be determined in a simple manner, e.g. by means
of which assembler instructions have been used. The typical sequence in an operating system
macro
 L 15,XYZ LOAD 15 WITH ENTRY ADR
 BALR 14,15 BRANCH TO ENTRY POINT
in general can not be interpreted, while it is expected that the following sequence from an
application program will be interpreted as CALL UPB112.
 L 15,=V(UPB112)
 BALR 14,15

This means: automatic transformation depends on the style of assembler programming. There is a
style, varying from one company to another, in which commercial assembler programs are written
and which in large part can be transformed. Many assembler programmers wrote programs in a
style similar to COBOL but COBOL did not execute fast enough at the time of programming. A
highly-developed assembler style (as e.g. that of SAP programs) cannot be transformed (or only
with very style-specific rules). For example the use of multi-level pointers. Indeed, this could be
transformed 1:1 into multi-level pointers (if the target language were e.g. C) but that is not what
is expected. The above BALR could be transformed into a PL/1 CALL XYZ in which XYZ
becomes a label variable but that is not what is expected.

It is expected that the program produced contain the language elements of a 3GL program to the
extent possible.

The progress of 3rd generation languages over assembler consisted, among other things, in
restricting the degrees of freedom of assembler and thereby bringing more semantic clarity into
the program code.
E.g. in the instruction
 BALR 14,15
register 15 is a variable (i.e. 1 degree of freedom). In order to determine where the flow of
control branches the content of register 15 must be determined.
In contrast
 CALL UPB112
no longer contains any degrees of freedom, the flow of control branches to procedure UPB112,
the semantic statement of the program code is unambiguous.

The following describes how the tool reASMgen tries to bridge the semantic distance between
assembler and 3rd generation languages.

2 Typing of Variables
In assembler the types of variable declarations often have little to do with the use of the variables
in statements. In a 3GL, on the other hand, the use must agree with the declaration. The problem
has the following variants:
• the type of field declaration does not agree with the type of field use
• the same field is used with different types at various places in the program
• a field isn't even declared, rather part of a larger field is referenced with offset +

length
• there is no fixed-point number type in assembler, numeric fields just have an implicit

decimal-point
reASMgen begins with the use of the variables and generates corresponding declarations. The
ZAP in
STATMEG DS CL5
 ...
 ZAP REFELD2,STATMEG
shows that we are dealing with a packed field, thus reASMgen generates
DCL 01 STATMEG FIXED DEC(9);
In this case STATMEG is not used as anything other than packed; therefore the name STATMEG
can be directly reinterpreted. But most if the time it is necessary to create a new interpretation as a
redefinition:
REFE DS CL10
 ...
 MP REFE,=P'10'
 DP REFE,=P'6'
 ...
 UNPK REFE,REFELD20(5)
becomes in PL/1
DCL 01 REFE FIXED DEC(19) ;
DCL 01 filler2 BASED(ADDR(REFE)) ,
 5 REFE_1 FIXED DEC(17) ,

 5 REFE_9 FIXED DEC(1) ;
DCL 01 REFE_0 BASED(ADDR(REFE)) PIC '(10)9' ;
 ...
 REFE = REFE * 10;
 REFE_1 = REFE / 6;
 ...
 REFE_0 = REFELD20;

In particular the use of offset + length instead of a field declaration leads to extended sub-
definitions:
 UNPK IBUF+44(5),IBUF+22(2)

DCL 01 IBUF CHAR(80) ;
DCL 01 filler5 BASED(ADDR(IBUF)) ,
 5 filler6 PIC '(22)X' ,
 5 IBUF_22 FIXED DEC(3) ,
 5 filler7 PIC '(20)X' ,
 5 IBUF_44 PIC '(5)9' ;

An option can be used to specify whether, a NAME + OFFSET should be generated with the type
char as substring (i.e. in COBOL: reference modification) or as redefinition. The option is
specified in the profile REASM.PRO as follows:
 options(substring_limit , «number»).
If the same NAME + OFFSET formulation is used more often than the limit specified in the
option, a redefinition is generated, otherwise a substring. From
 MVC PBUF+20(13),=C'SALES LIST 2'
the following is produced
 MOVE 'SALES LIST 2' TO PBUF (21 : 13).

The generated names from a redefinition are produced by appending arbitrary combinations of
offset and type to the original names until a new unique name is generated. Lower case is used
deliberately, e.g. "filler72" or "ZW_dec", so that in revising the 3GL program the names can
safely be replaced with an editor (there is no chance of confusion with possible names FILLER72
or ZW_DEC from the original assembler progam).

reASMgen uses internally the following types:
• dec packed decimal
• bin binary
• num zoned decimal
• char character
• bits(2) single bits (here for example bit 2 within a byte)
• ptr pointer
• hex hexadecimal or unknown types

The type bit: as a rule the granularity with which reASMgen views memory is the byte. Bit
operations are rare in commercial programming (in COBOL there aren't even any instructions for
this). There are, however, Switches which are one byte in COBOL but in assembler typically
one bit.
SW01 DS XL1

 ...
 XI SW01,X'04' toggle switch
 ...
 OI SW01,X'04' set switch to one
 ...
 NI SW01,X'00' set switch to zero

In the 3GL reASMgen declares one variable per bit referenced. The bit variable is
redefined on the original variable so that memory use is not increased. Due to this the generated
code will not function without manual intervention. It is necessary to check manually whether an
increase in memory could cause problems (if e.g. SW01 is part of a datebase record). If not, the
REDEFINES can be removed.
01 SW01 PIC X .
01 SW01-BIT-3 REDEFINES SW01 PIC X(1) .
 ...
 IF SW01-BIT-3 = HIGH-VALUE
 THEN
 MOVE LOW-VALUE TO SW01-BIT-3
 ELSE
 MOVE HIGH-VALUE TO SW01-BIT-3
 END-IF.
 ...
 MOVE HIGH-VALUE TO SW01-BIT-3.
 ...
 MOVE LOW-VALUE TO SW01.
It is not always possible to determine the data type from use in a single statement. For example
from CVB
 CVB REG3,ZAELD
a type for REG3 and ZAELD can be determined, but not from
 LA 4,3(3)
In this case the type is established through data flow investigations:
 CVB REG3,ZAELD
 ...
 LA 4,3(3)
From the LA statement a reverse data flow search for REG3 is started. After a while it reaches the
CVB statement and obtains the type of REG3 there. This is first entered in the right side of the
LA statement and then, because it is an assignment, in the left side as well, i.e. in register 4.
The use of constants or EQUs is very helpful:
 L REG10,=A(BLANK)
The type of Reg10 can be determined as pointer in one step. The following construction, which
at first glance seems similar,
ADR DC A(BLANK)
 ...
 L 7,ADR
requires that the content of ADR be determined through a long data flow search. If the data flow
search arrives at the beginning of the program, the type of ADR can be determined as pointer.
Since data flow search for the purpose of type determination is also limited to a specific number
of statements -- so that reASMgen doesn't use a lot of time for a possibly unsuccessful search --
it is possible that here the type of register 7 cannot be determined at all.
Data flow is an aid in formatting for output -- a very special data type. From
MASK DC XL12'40202020204B2021206B2020'

WRKSUMV DC PL5'0'
 ...
 MVC PBUF+42(12),MASK
 ED PBUF+42(12),WRKSUMV
the following is produced
01 filler180_0 REDEFINES PBUF.
 05 filler3 PIC X(42).
 05 PBUF-42 PIC BZZZZ.ZZ9,99.
01 WRKSUMV PIC S9(9) USAGE COMP-3 VALUE ZERO.
01 WRKSUMV-0 REDEFINES WRKSUMV PIC S9(7)V9(2) USAGE COMP-3.
 ...
MOVE WRKSUMV-0 TO PBUF-42.
in that beginning with ED the mask is sought backwards and then entered as data type in PBUF-
42.
In assembler, numbers with decimal positions (e.g. WRKSUMV) only have the decimal point at
an implicit location. The only indication of decimal positions is the mask in formatting for
output. This is not enough to establish correct decimal placement for the entire program. If e.g.
with WRKSUMV in general two decimal positions are reserved, it is still uncertain how to take
this into consideration in an assignment MP WRKSUMV,REFE. Because the arithmetic of 3GL
considers decimal definitions, an incorrect reservation of decimal positions would have the effect
that the arithmetic executes erroneously. Thus also in the 3GL reASMgen retains an implicit
decimal position and generates a decimal position redefinition for the MOVE appropriate for
formatting for output.

3 The Formation of Data Structures
In assembler arbitrary redefinitions are allowed, sub-definitions are unknown. In PL/1 or
COBOL on the other hand redefinitions are only allowed under strict criteria and sub-definitions
provide an important element of style. reASMgen contains a few heuristics to achieve an
organization with a natural appearance. From
QDSECT DSECT
QREC DS 0CL80
QSA DS CL2 record type
QWARE DS CL11
QPRKILO DS PL4
QKILO DS PL4
 ORG QWARE
QNAME DS CL10
QZIP DS CL4

for example, the following is produced in COBOL
01 QDSECT.
 05 QREC PIC X(80) .
 05 filler9 REDEFINES QREC.
* record type
 15 QSA PIC X(2) .
 15 filler72.
 20 QWARE PIC X(11) .
 20 QPRKILO PIC S9(7) USAGE COMP-3 .
 20 QKILO PIC S9(7) USAGE COMP-3 .
 15 filler69 REDEFINES filler72.

 20 QNAME PIC X(10) .
 20 QZIP PIC X(4) .
and in PL/1
DCL
01 QDSECT,
 05 QREC CHAR(80) ,
01 filler9 BASED(ADDR(QREC)) ,
 15 QSA CHAR(2) , /* record type */
 15 filler72,
 20 QWARE CHAR(11) ,
 20 QPRKILO FIXED DEC(7) ,
 20 QKILO FIXED DEC(7) ,
01 filler69 BASED(ADDR(filler72)) ,
 20 QNAME CHAR(10) ,
 20 QZIP CHAR(4) ,
In general redefinitions in PL/1 are done with BASED(ADDR(xyz)). Since in assembler QREC
could readily be used as a field, in the 3GL QREC cannot simply be used as a structure name; on
the contrary, QREC must also be made available as a field in the 3GL. A generated name is
redefined on it as a structure name. Since in assembler arbitrary redefinitions are allowed, the
reASMgen heuristics cannot transform everything into the strict hierarchy necessary for a 3GL.
In the LOG file there are references to such places. Sometimes in these cases a sub-definition can
be achieved manually by raising the redefinition to level 01, while reASMgen unsuccessfully
tried at level 15 or 20.

4 Explicitly addressed Variables

4.1 Tables
Explicitly addressed variables (also called "indirectly addressed variables") are memory locations
addressed through registers, e.g.
 ZAP 0(3,7),=P'7'
A transformation of assembler into a 3GL should use the language elements of the 3GL. Since
assembler didn't yet have the constructs of indexed variables (or tables, arrays), the
transformation should find and correspondingly interpret those assembler statements in which the
programmer intended a table:
TAB7 DS 8PL3
 ...
 LA REG7,TAB7
 ...
 ZAP 0(3,7),=P'50'
should become in PL/1
DCL 01 TAB7 (8) FIXED DEC(5) ;
 ...
 REG7_TAB7_ix = 1;
 ...
 TAB7(REG7_TAB7_ix) = 50;

Unfortunately TAB7 is often not declared so clearly. Often one also finds e.g.
TAB7 DS PL3
 DS CL21

On the other hand not every indirectly addressed variable is a table. It can also be a case of
character string processing or a pointer with some other, in principle arbitrary, use.
Thus it is necessary to use heuristic rules for indirect addressing that
• in those cases, in which a table was intended, map to a table
• in those cases, in which a table was not intended, do not map to a table.
This is a typical reengineering dilemma: a specific construct with specific semantics, that can be
expressed explicitly in the target language, can be found in the source language only as
programming style, mostly in different variants, a logical level deeper. One can try to recognize
these patterns with heuristic rules, but must accept the fact that the rules will necessarily always
be incomplete and the transformation is dependent on programming style.
According to our experience one of the few reliable indications for a table,other than the
declaration
TAB DS 8PL3
is use of an indirectly addressed variable in a loop. For example:
 LA REG7,TAB
VM402 ZAP 0(3,REG7),=P'50'
 LA REG7,3(REG7)
 BCT REG11,VM402
or presented as an abstract pattern
 initializing REG with address
LABEL using REG as pointer
 incrementing REG by increment amount
 GOTO LABEL

A similar pattern is
 LA REG7,TAB-3
VM402 LA REG7,3(REG7)
 ZAP 0(3,REG7),=P'50'
 BCT REG11,VM402
or presented abstractly
 Initializing REG with Address
LABEL Incrementing REG by increment amount
 Using REG as pointer
 GOTO LABEL
These patterns are best recognized through the data flow of the register. Here it is required that
on the one hand the initializing of REG7 be unambiguously determined and on the other hand the
incrementing by 3 in the loop be easily recognized. In the following (constructed) example the
table is not recognized:
VM402 LA 7,1(7)
 ZAP 0(3,7),=P'7'
 LA 7,2(7)
 BCT REG11,VM402
But with tables that do not have merely one field as table element but rather have a sub-structure
e.g.
DCL 01 TABMKM_table (6) ,
 05 TABMKM_0 FIXED DEC(5) ,
 05 TABMKM_3 FIXED DEC(3) ,
 05 TABMKM_5 FIXED DEC(3) ;
it is not uncommon that in the loop the register is incremented at several places.

Tables with sub-structures are only rarely recognized by reASMgen, two- or multi-dimensional
tables not at all. Further examples of non-transformable assembler code are pointer tables
changed at run time, or multi-level use of pointers.
Once reASMgen has identified a table XYZ (e.g. through use in a loop), a subsequent heuristic
starts and considers the surroundings of the declaration of XYZ, to see if further fields should be
integrated into the table, e.g. the field
 DS CL21
with
TAB7 DS PL3
 DS CL21
In this manner the size of the table is determined. Since the various combinations of assembler
declarations limit what can be systematized in heuristics, in every case the programmer must
manually check the size of tables (PL/1: dimension, COBOL: OCCURS).
Table recognition is the most complex program component in reASMgen. If you as
programmer occasionally recognize a table that reASMgen didn't, keep in mind that
• humans are still superior to machines in pattern recognition
• in many other cases reASMgen quickly identifies tables with the aid of data flow

search, while you as programmer -- very time-intensive and error-prone -- have to look
for the sources of an indirectly addressed variable

• You can very easily identify for the tool reASMgen a table not recognized by inserting
into the source code a redefinition such as

 XYZ DS 8PL3
 or providing for the DS a reference number to the reference file containing a command for

table interpretation.

4.2 The Processing of Character Strings
If an indirectly addressed variable is not to be interpreted as a table, it will be interpreted -- to the
extent the data type permits -- as character string processing. Typical for character string
processing is
• the use of a pointer that steps through the character string -- in assembler this is the register

contining its address
• irregular incrementation of the pointer (in contrast to a table, with which the "pointer" is

incremented regularly in a loop)
• access to the character string uses mostly pieces with a length of 1 byte
For example:
 LA REG4,PBUF
 ...
 MVC 10(3,R4),=3C'A'
becomes in COBOL
 COMPUTE hptr = REG4-PBUF-ix + 10.
 STRING 'AAA' DELIMITED BY SIZE INTO PBUF
 WITH POINTER hptr.
and in PL/1
 SUBSTR(PBUF,REG4_PBUF_ix + 10,3) = (3)'A';

The semantics of tables and the semantics of character strings overlap: one-position tables can be
interpreted as character strings; on the other hand character strings can be interpreted as one-

position tables. reASMgen takes advantage of this by simultaneously declaring for every
character string a table -- thus for access with a length of 1, table access can be generated instead
of the CPU-intensive PL/1 SUBSTR.
DCL 01 PBUF_value CHAR(133) ;
DCL 01 PBUF_table BASED(ADDR(PBUF_value)) ,
 03 PBUF (133) CHAR(1) ;
DCL 01 filler1 BASED(ADDR(PBUF_value)) ,
 10 ... sub-definitions..........
The above SUBSTR statement thus yields in PL/1
 SUBSTR(PBUF_value,REG4_PBUF_ix + 10,3) = (3)'A';

4.3 DSECTs
DSECTs are essentially dealt with as indirectly addressed variables. Differences are:
• DSECTs have their own data structure hierarchy. If e.g. the DSECT CDSECT

overlays the input record CUSTREC, this corresponds to a sub-organization of
CUSTREC which reASMgen associates with CUSTREC through redefinition. A field
such as CNAME can then be accessed in the 3GL through qualification (COBOL: OF,
PL1: period).

CUSTREC DS CL80
 ...
CDSECT DSECT
CREC DS 0CL80
CNUMBER DS PL4
CNAME DS CL15

01 CUSTREC-value PIC X(80) .
01 CUSTREC-struct REDEFINES CUSTREC.
 10 CREC PIC X(80) .
 10 filler7 REDEFINES CREC.
 20 CNUMBER PIC S9(7) USAGE COMP-3 .
 20 CNAME PIC X(15) .
 ...
Use in COBOL: CNAME OF CUSTREC-struct
Use in PL/1: CUSTREC_struct.CNAME

• DSECTs are not used like indirectly addressed variables for character string
processing.

• Positioning of a DSECT on a memory location that cannot be statically determined could be
represented in COBOL85 with the new instruction SET ADDRESS ...TO... and in PL/1 with
the positioning of a pointer. However, the address calculation that in assembler usually
precedes positioning is not allowed in 3GLs.

4.4 Pointers
There are cases in which interpretation as a pointer would even be appropriate in the 3GL.
reASMgen can only do this in a very limited way, since there are no good discrimination criteria
for the above interpretations as table/string -- from the view of assembler all of these cases are
pointers. In particular reASMgen cannot mix the various pointer interpretations, e.g. to treat a
register once as a pointer to be dereferenced and shortly thereafter as an index in string processing
-- easily possible in assembler.

Passing parameters is a case requiring interpretation as a pointer. The parameters for the
assembler program can be declared in the reference file. reASMgen includes the parameters in
the program and interprets the dereferencing of the address list passed in REG1, e.g. in the
declaration of two parameters of type address:
 LM 3,4,0(1)
 L 6,0(3)
 L 7,0(4)
is interpreted in PL/1 as
 DCL 01 REG3_ptr POINTER ;
 DCL 01 REG4_ptr POINTER ;
 DCL 01 REG6_ptr POINTER ;
 DCL 01 REG7_ptr POINTER ;

 REG4_ptr = ADDR(parameter2) ;
 REG3_ptr = ADDR(parameter1) ;
 REG6_ptr = parameter1;
 REG7_ptr = parameter2;
If -- as in the example -- the parameters passed are not data fields but addresses, as a rule
reASMgen cannot deal with this correctly due to the multi-level dereferencing. In the example
this works because REG6 and REG7 function as DSECT registers in the assembler program:
 USING DS1,6
 USING DS2,7

5 Flow of Control

5.1 The Uniqueness of Flow of Control
A more precise discussion of this problem can be found in the reASM handbook. reASM
already contains all heuristics to determine the flow of control to the uniqueness required. For
example with the construct
 L REG6,=A(PRINT)
 ...
 BALR REG14,REG6
through flow of control the content of register 6 is determined and -- if a unique content can be
determined -- transformed into the PL/1 code

DCL 01 REG6_PRINT_ix POINTER ;
...
REG6_DRUCK_ix = ADDR(PRINT) ;
...
CALL PRINT;

The assignment of the address of PRINT is also generated, although in the 3GL this no longer
makes sense. This is due to the fact that data flow only establishes a directed connection of the
BALR statement to the L statement, but not the other way around. The BALR statement "knows"
that the content of REG6 can only be the address of PRINT. The L statement does not "know"
that the content of REG6 will only be used by the BALR statement and not later. Thus the L
statement must be transformed. In PL/1 this is still part of the language, in COBOL no longer.
In any case those situations in which reASMgen generates the data type POINTER must be
checked manually. It can be a case of explicit addressing that could not be interpreted and must
be corrected manually, or -- as here -- already correctly interpreted register usage, such that
REG6_PRINT_ix can be deleted.

As you can see, many of the heuristics in reASMgen are based on investigation of data flow.
Not only are these expensive in terms of time but -- especially in assembler -- their utility can be
heavily impacted by unclear source code, in particular through flow of control anomalies (see
reASM handbook). As a rule these should be removed from the source code before starting a
reASMgen transformation.

5.2 Dynamic Code Modification
As already discussed in the reASM handbook, all places where code is modified are identified
and -- to the extent possible -- re-interpreted as switches. While in reASM the emphasis is on
identification and possible flow of control, in reASMgen generation as switches is important:
VT090 NOP VERTRX
 OI VT090+1,X'F0'

becomes in PL/1
VT090:
 IF switchVT090 = 1 THEN GOTO VERTRX;
 switchVT090 = 1;

and in COBOL
VT090.
 IF switchVT090 = 1 THEN GO TO VERTRX
 END-IF .
 MOVE 1 TO switchVT090.

5.3 Restructuring Flow of Control
reASMgen deliberately attempts no automatic restructuring of flow of control. Thus the initial
result of transformation is 3GL code in which the correspondence between 3GL statement and
assembler statement is easy to establish. This is important for manual control.
Once (perhaps after repeated corrections to the assembler source code) this 1:1 code is
satisfactory, the restructuring module of reASMgen can be used to allow restructuring of
selected code sequences. You will find a discussion of restructuring in the reASM handbook.
reASMgen uses the same restructuring, except that instead of pseudocode PL/1 or COBOL85 is
generated.
A much more important form of restructuring is the division of code into procedures. But this has
little to do with the transformation of assembler into the 3GL. This form of restructuring bridges
the distance between the "early", unstructured, 3GL programming style and the "late", mature,
3GL style. For this purpose a corresponding 3GL tool should be used (although one must add
that the tools available for this are everything but satisfactory).

6 The Adaptability of the Transformation

6.1 Macros
Assembler macros are declared -- just as in reASM -- in the file MACRO.ARI. Now in addition,
the 3GL code to be generated can be specified as needed.

It is not necessary to declare all macros but in comparison with reASM more macros must be
declared. This is particularly true of macros that set a register. Since reASMgen investigates the
complete data flow of the registers and uses this to obtain type information, the lack of
information about the setting of a register has greater consequences than with reASM.

6.2 The Reference File
The reference file can influence the analysis/generation of individual statements. For this a
reference number can be entered in the assembler source code or listing in the comment area. In
the reference file an entry is made indicating how each reference number is to be interpreted.
With the reference file you can for example
• introduce assembler statements to e.g. make the structure of an input buffer known through

redefinition
• resolve ambiguities in the interpretation of an indirectly addressed variable
• declare tables
• deal with procedures with multiple entry points
• suppress the generation of a line or specify generation of text
A precise description can be found in the file REF.REF.

6.3 The generated Syntax
One of the design principles of reASMgen was that the differences between COBOL, PL/1, and
other 3GL languages (the language C would have a special role here) have as little influence on
the transformation process as possible. With few exceptions it was possible to defer the
distinction between generating COBOL or PL/1 until the last step of the transformation process in
which the internal metacode is turned into COBOL or PL/1 syntax. This step is in the file
GEN.ARI and can be completely adapted, e.g. to generate other COBOL or PL/1 dialects, or
instead of the COBOL85 STRING statements to generate company-specific subprogram calls for
character string processing.
Experience with Prolog is required to adapt the file GEN.ARI.
Outside of the file GEN.ARI the difference between COBOL and PL/1 affects the following
places (not adaptable):

• ordering data declarations, particularly redefinitions
• dealing with DSECTs
• if in an assignment the target variable would have to be a substring of a declared

variable (common in PL/1, not in COBOL)
• if an indirectly addressed variable cannot be interpreted as table or string, in PL/1 a

based pointer can be generated, not in COBOL

