reASMgen

The Transformation of Assembler
into
COBOLS850r PL/1

1 Introduction

In the transformation of Assembler into a 3rd gatien language (3GL) a gigantic range of
problems has to be considered. At the one endi®fdange are the obvious 1:1 transformations,

e.g.inPL/1
AP FIELD,SUM

becomes
FIELD = FIELD + SUM

In the target language there is a 1:1 congruerdtoact. At the other end of this range are
assembler constructs which even with the best aliyais cannot be automatically transformed
into a 3GL language. Examples are operating systaia and operating system macros.

One is faced with the question of how to determvhéch end of this range a given assembler
program belongs to. Unfortunately this cannot &eanined in a simple manner, e.g. by means
of which assembler instructions have been usee tyiffical sequence in an operating system

macro
L 15XYZ LOAD 15 WITH ENTRY ADR
BALR 14,15 BRANCH TO ENTRY POINT

in general camot be interpreted, while it is expected that thedwihg sequence from an

application program will be interpreted as CALLBIF 2.
L 15,=V(UPB112)
BALR 14,15

This means: automatic transformation depends oayteeof assembler programming. There is a
style, varying from one company to another, in WWldtommercial assembler programs are written
and which in large part can be transformed. Masgmbler programmers wrote programs in a
style similar to COBOL but COBOL did not executstfanough at the time of programming. A
highly-developed assembler style (as e.g. that®dt Brograms) cannot be transformed (or only
with very style-specific rules). For example tise wf multi-level pointers. Indeed, this could be
transformed 1:1 into multi-level pointers (if trerget language were e.g. C) but that is not what
is expected. The above BALR could be transforméala PL/1 CALL XYZ in which XYZ
becomes a label variable but that is not what peeted.

It is expected that the program produced contaridhguage elements of a 3GL program to the
extent possible.

The progress of 3rd generation languages over ddseoonsisted, among other things, in
restricting the degrees of freedom of assemblettlageby bringing more semantic clarity into
the program code.

E.g. in the instruction
BALR 14,15

register 15 is a variable (i.e. 1 degree of freedoim order to determine where the flow of
control branches the content of register 15 mustdbermined.

In contrast
CALL UPB112

no longer contains any degrees of freedom, the éibeontrol branches to procedure UPB112,
the semantic statement of the program code is uigaois.

The following describes how the ta@ASMgen tries to bridge the semantic distance between
assembler and 3rd generation languages.

2 Typing of Variables

In assembler the types of variable declaratiorendftave little to do with the use of the variables
in statements. In a 3GL, on the other hand, tkenusst agree with the declaration. The problem
has the following variants:
 the type of field declaration does not agree with the type of field use
» the same field is used with different types at various places in the program
» afield isn't even declared, rather part of a larger field is referenced with offset +
length
* there is no fixed-point number type in assembler, numeric fields just have an implicit
decimal-point
reASMgen begins with the use of the variables and genecatessponding declarations. The

ZAP in
STATMEG DS CL5

ZAP REFELD2,STATMEG

shows that we are dealing with a packed field, tedsSMgen generates
DCL 01 STATMEG FIXED DEC(9);

In this case STATMEG is not used as anything otien packed; therefore the name STATMEG
can be directly reinterpreted. But most if the tiine necessary to create a new interpretaticen as

redefinition:
REFE DS CL10

MP REFE,=P'10'
DP REFE=P'6'

UNPK REFE,REFELD20(5)

becomes in PL/1

DCL 01 REFE FIXED DEC(19) ;

DCL 01 filler2 BASED(ADDR(REFE)) ,
5 REFE_1 FIXED DEC(17) ,

5 REFE_9 FIXED DEC(1) ;
DCL 01 REFE_0 BASED(ADDR(REFE)) PIC '(10)9';

REFE = REFE * 10
REFE_1 = REFE / 6;

REFE_0 = REFELD20;

In particular the use of offset + length instea@d dield declaration leads to extended sub-

definitions:
UNPK IBUF+44(5),IBUF+22(2)

DCL 01 IBUF CHAR(80) ;

DCL 01 filler5s BASED(ADDR(IBUF))
5 filler6 PIC '(22)X',
5 IBUF_22 FIXED DEC(3),
5 filler7 PIC '(20)X',
5 IBUF_44 PIC '(5)9';

An option can be used to specify whether, a NAMBRFSET should be generated with the type
char assubstring (i.e. in COBOL: reference modification) or rslefinition. The option is
specified in the profile REASM.PRO as follows:

options(substring_limit , «xnumber»).
If the same NAME + OFFSET formulation is used maoiten than the limit specified in the

option, a redefinition is generated, otherwiselassing. From
MVC PBUF+20(13),=C'SALES LIST 2'

the following is produced
MOVE 'SALES LIST 2' TO PBUF (21 : 13).

Thegenerated names from a redefinition are produced by appending eabjtcombinations of
offset and type to the original names until a nenque name is generated. Lower case is used
deliberately, e.g. "filler72" or "ZW_dec", so thatrevising the 3GL program the names can
safely be replaced with an editor (there is no chaf confusion with possible names FILLER72
or ZW_DEC from the original assembler progam).

reASMgen uses internally the following types:

* dec packed decimal

* bin binary

* num zoned decimal

» char character

* bits(2) single bits (here for example bit 2 within a byte)
* ptr pointer

* hex hexadecimal or unknown types

The typebit: as a rule the granularity with whichRASMgen views memory is the byte. Bit
operations are rare in commercial programming @BOL there aren't even any instructions for
this). There are, howeveBwitches which are one byte in COBOL but in assembler tghyc

one hit.
SWO01 DS XL1

'>-<'I SwW01,X'04' toggle switch
6I SW01,X'04' set switch to one

i\-lll SWO01,X'00' set switch to zero

In the 3GLreASMgen declares one variable per bit referenced. Thedsiable is

redefined on the original variable so that mema®y i$ not increased. Due to this the generated
code will not function without manual interventioit.is necessary to check manually whether an
increase in memory could cause problems (if e.g0OSW part of a datebase record). If not, the

REDEFINES can be removed.
01 SWO01 PIC X.
01 SWO01-BIT-3 REDEFINES SWO01 PIC X(1) .

IF SWO01-BIT-3 = HIGH-VALUE
THEN

MOVE LOW-VALUE TO SWO01-BIT-3
ELSE

MOVE HIGH-VALUE TO SWO01-BIT-3
END-IF.

MOVE HIGH-VALUE TO SWO01-BIT-3.

MOVE LOW-VALUE TO SWO1.
It is not always possible to determine the data fypm use in a single statement. For example

from CVB
CvVvB REG3,ZAELD

a type for REG3 and ZAELD can be determined, batiframn
LA 4,3(3)

In this case the type is established throdgta flow investigations:
CVB REG3,ZAELD

LA 43(3)
From the LA statement a reverse data flow seancREG3 is started. After a while it reaches the
CVB statement and obtains the type of REG3 thé&tes is first entered in the right side of the
LA statement and then, because it is an assignnmetfie left side as well, i.e. in register 4.

The use of constants or EQUSs is very helpful:
L REG10,=A(BLANK)

The type of Reg10 can be determined as pointenénstep. The following construction, which

at first glance seems similar,
ADR DC A(BLANK)

L 7,ADR
requires that the content of ADR be determinedughoa long data flow search. If the data flow
search arrives at the beginning of the programtyihe of ADR can be determined as pointer.
Since data flow search for the purpose of typerdetetion is also limited to a specific number
of statements -- so the#kASMgen doesn't use a lot of time for a possibly unsudoésearch --
it is possible that here the type of register moate determined at all.

Data flow is an aid ifiormatting for output -- a very special data type. From
MASK DC XL12'40202020204B2021206B2020'

WRKSUMV DC PLS5'0’

MVC PBUF+42(12),MASK
ED PBUF+42(12),WRKSUMV

the following is produced
01 fillerl80_0 REDEFINES PBUF.
05 filler3 PIC X(42).
05 PBUF-42 PIC BZZ272Z.279,99.
01 WRKSUMYV PIC S9(9) USAGE COMP-3 VALUE ZERO.
01 WRKSUMV-0 REDEFINES WRKSUMYV PIC S9(7)V9(2) USAGE COMP-3.

MOVE WRKSUMV-0 TO PBUF-42.

in that beginning with ED the mask is sought baakisand then entered as data type in PBUF-
42.

In assembler, numbers witlecimal positions (e.g. WRKSUMYV) only have the decimal point at
an implicit location. The only indication of dearpositions is the mask in formatting for
output. This is not enough to establish correctrdal placement for the entire program. If e.qg.
with WRKSUMV in general two decimal positions aeserved, it is still uncertain how to take
this into consideration in an assignmbtR? WRKSUMV,REFEEBecause the arithmetic of 3GL
considers decimal definitions, an incorrect res@meof decimal positions would have the effect
that the arithmetic executes erroneously. Thusialthe 3GLreASMgen retains an implicit
decimal position and generates a decimal posigdefinition for the MOVE appropriate for
formatting for output.

3 The Formation of Data Structures

In assembler arbitrary redefinitions are allowedh-definitions are unknown. In PL/1 or
COBOL on the other hand redefinitions are onlywaéd under strict criteria and sub-definitions
provide an important element of styleeASMgen contains a few heuristics to achieve an

organization with a natural appearance. From
QDSECT DSECT
QREC DS 0CL80
QSA DS CL2 record type
QWARE DS CL11
QPRKILO DS PL4
QKILO DS PL4
ORG QWARE
QNAME DS CL10
QzZIP DS cL4

for example, the following is produced in COBOL
01 QDSECT.
05 QREC PIC X(80) .
05 filler9 REDEFINES QREC.
* record type
15 QSA PIC X(2) .
15 filler72.
20 QWARE PIC X(11) .
20 QPRKILO PIC S9(7) USAGE COMP-3.
20 QKILO PIC S9(7) USAGE COMP-3 .
15 filler69 REDEFINES filler72.

20 QNAME PIC X(10) .
20 QZIP PIC X(4) .

and in PL/1
DCL
01 QDSECT,
05 QREC CHAR(80) ,
01 filler9 BASED(ADDR(QRECQ)) ,
15 QSA CHAR(2) , /* record type */
15 filler72,
20 QWARE CHAR(11),
20 QPRKILO FIXED DEC(7),
20 QKILO FIXED DEC(7) ,
01 filler69 BASED(ADDR(filler72)) ,
20 QNAME CHAR(10) ,
20 QZIP CHAR(4) ,

In general redefinitions in PL/1 are done with BAREDDR(xyz)). Since in assembler QREC
could readily be used as a field, in the 3GL QREGnot simply be used as a structure name; on
the contrary, QREC must also be made availablefiatdan the 3GL. A generated name is
redefined on it as a structure name. Since imalsise arbitrary redefinitions are allowed, the
reASMgen heuristics cannot transform everything into thieeshierarchy necessary for a 3GL.

In the LOG file there are references to such plaSemetimes in these cases a sub-definition can
be achieved manually by raising the redefinitioteteel 01, whilereASMgen unsuccessfully

tried at level 15 or 20.

4 Explicitly addressed Variables

4.1 Tables

Explicitly addressed variables (also called "indingaddressed variables") are memory locations
addressed through registers, e.g.

ZAP 0(3,7),=P'7
A transformation of assembler into a 3GL should thegdlanguage elements of the 3GL. Since
assembler didn't yet have the constructs of indeaeidbles (or tables, arrays), the
transformation should find and correspondinglyriptet those assembler statements in which the

programmeintended a table:
TAB7 DS 8PL3

LA REG7,TAB7
ZAP 0(3,7),=P'50'
should become in PL/1
DCL 01 TAB7 (8) FIXED DEC(5) ;
REG7_TAB7 ix = 1
TAB7(REG7_TAB7_ix) = 50;
Unfortunately TAB7 is often not declared so clear@ften one also finds e.g.

TAB7 DS PL3
DS CL21

On the other hand not every indirectly addresse@bie is a table. It can also be a case of
character string processing or a pointer with sother, in principle arbitrary, use.

Thus it is necessary to ukeuristic rules for indirect addressing that

* inthose cases, in which a table was intended,tmagable

* in those cases, in which a table was intended, daoot map to a table.

This is a typical reengineering dilemma: a spe@bostruct with specific semantics, that can be
expressed explicitly in the target language, cafobed in the source language only as
programming style, mostly in different variantdpgical level deeper. One can try to recognize
these patterns with heuristic rules, but must adtepfact that the rules will necessarily always
be incomplete and the transformation is dependeprogrammingtyle.

According to our experience one of the few relidbtiications for a table,other than the

declaration
TAB DS 8PL3

is use of an indirectly addressed variable in @ld@r example:
LA REG7,TAB

VM402 ZAP 0(3,REG7),=P'50'
LA REG7,3(REG7)
BCT REG11,VvM402

or presented as an abstract pattern
initializing REG with address

LABEL using REG as pointer
incrementing REG by increment amount
GOTO LABEL

A similar pattern is
LA REG7,TAB-3
VM402 LA REG7,3(REG7)
ZAP 0(3,REG7),=P'50'
BCT REG11,VvM402
or presented abstractly
Initializing REG with Address
LABEL Incrementing REG by increment amount
Using REG as pointer
GOTO LABEL
These patterns are best recognized througtdteeflow of the register. Here it is required that
on the one hand the initializing of REG7 be unambigsly determined and on the other hand the
incrementing by 3 in the loop be easily recognizkudthe following (constructed) example the
table isnot recognized:
VM402 LA 7.1(7)
ZAP 0(3,7),=P'7
LA 7.2(7)
BCT REG11,vM402
But with tables that do not have merely one fieddable element but rather have a sub-structure
e.g.
DCL 01 TABMKM _table (6) ,
05 TABMKM_O FIXED DEC(5) ,
05 TABMKM_3 FIXED DEC(3) ,
05 TABMKM_5 FIXED DEC(3) ;

it is not uncommon that in the loop the registengemented at several places.

Tables with sub-structures are only rarely recogphizyreASMgen, two- or multi-dimensional
tables not at all. Further examples of non-tramséble assembler code are pointer tables
changed at run time, or multi-level use of pointers

OncereASMgen has identified a table XYZ (e.g. through use In@p), a subsequent heuristic
starts and considers the surroundings of the daarof XYZ, to see if further fields should be
integrated into the table, e.g. the field

DS CL21
with
TAB7 DS PL3
DS CL21

In this manner the size of the table is determin®ithce the various combinations of assembler

declarations limit what can be systematized in istas, in every case the programmer must

manually check the size of tables (PL/1: dimensi@@BOL: OCCURS).

Table recognition is the most complex program canepd inreASMgen. If you as

programmer occasionally recognize a table thAtSMgen didn't, keep in mind that

* humans are still superior to machines in pattecogeition

* in many other cases reASMgen quickly identifies tables with the aid of data flow
search, while you as programmer -- very time-intensive and error-prone -- have to look
for the sources of an indirectly addressed variable

* You can very easily identify for the tool reASMgen a table not recognized by inserting

into the source code a redefinition such as
XYZ DS 8PL3

or providing for the DS a reference numbehmreference file containing a command for
table interpretation.

4.2 The Processing of Character Strings

If an indirectly addressed variable is not to ernpreted as a table, it will be interpreted -the

extent the data type permits -- as character spiogessing. Typical for character string

processing is

» the use of a pointer that steps through the charatiing -- in assembler this is the register
contining its address

* irregular incrementation of the pointer (in contrast to a table, with which the "pointer” is
incremented regularly in a loop)

» access to the character string uses mostly pieces with a length of 1 byte

For example:
LA REG4,PBUF

MVC 10(3,R4),=3C'A'
becomes in COBOL
COMPUTE hptr = REG4-PBUF-ix + 10.
STRING 'AAA’ DELIMITED BY SIZE INTO PBUF
WITH POINTER hptr.

and in PL/1
SUBSTR(PBUF,REG4_PBUF_ix + 10,3) = (3)'A";

The semantics of tables and the semantics of dearsicings overlap: one-position tables can be
interpreted as character strings; on the other bhathacter strings can be interpreted as one-

position tablesreASMgen takes advantage of this by simultaneously deddon every
character string a table -- thus for access witdmgth of 1, table access can be generated instead

of the CPU-intensive PL/1 SUBSTR.

DCL 01 PBUF_value CHAR(133) ;

DCL 01 PBUF_table BASED(ADDR(PBUF _value)) ,
03 PBUF (133) CHAR(1) ;

DCL 01 fillerl BASED(ADDR(PBUF_value)) ,
10 ... sub-definitions.......

The above SUBSTR statement thus yields in PL/1
SUBSTR(PBUF _value,REG4_PBUF _ix + 10,3) = (3)A;

4.3 DSECTs

DSECTs are essentially dealt with as indirectlyradsed variables. Differences are:

» DSECTs have their own data structure hierarchy. If e.g. the DSECT CDSECT
overlays the input record CUSTREC, this corresponds to a sub-organization of
CUSTREC which reASMgen associates with CUSTREC through redefinition. A field
such as CNAME can then be accessed in the 3GL through qualification (COBOL: OF,
PL1: period).

CUSTREC DS CL80

CDSECT DSECT
CREC DS 0CL80
CNUMBER DS PL4
CNAME DS CL15

01 CUSTREC-value PIC X(80) .
01 CUSTREC-struct REDEFINES CUSTREC.
10 CREC PIC X(80) .
10 filler7 REDEFINES CREC.
20 CNUMBER PIC S9(7) USAGE COMP-3 .
20 CNAME PIC X(15) .

Usein COBOL: CNAME OF CUSTREC-struct

Usein PL/1: CUSTREC_struct. CNAME

» DSECTs are not used like indirectly addressed variables for character string
processing.

» Positioning of a DSECT on a memory location thaincd be statically determined could be
represented in COBOLS85 with the new instructionTODRESS ...TO... and in PL/1 with
the positioning of a pointer. However, the addedsulation that in assembler usually
precedes positioning is not allowed in 3GLs.

4.4 Pointers

There are cases in which interpretation as a poield even be appropriate in the 3GL.
reASMgen can only do this in a very limited way, since thare no good discrimination criteria
for the above interpretations as table/stringenfithe view of assembler all of these cases are
pointers. In particulareASMgen cannot mix the various pointer interpretationg, & treat a
register once as a pointer to be dereferencedhantlysthereafter as an index in string processing
-- easily possible in assembler.

Passingparametersis a case requiring interpretation as a pointére parameters for the
assembler program can be declared in the refeféaceeASMgen includes the parameters in
the program and interprets the dereferencing oatitess list passed in REG1, e.g. in the
declaration of two parameters of type address:

LM 3,4,0(1)
L 6,0(3)
L 7,04)

is interpreted in PL/1 as
DCL 01 REG3 _ptr POINTER ;
DCL 01 REG4_ptr POINTER ;
DCL 01 REGG6_ptr POINTER ;
DCL 01 REG7_ptr POINTER ;

REG4_ptr = ADDR(parameter2) ;
REG3_ptr = ADDR(parameterl) ;
REG6_ptr = parameterl;
REG7_ptr = parameter2;

If -- as in the example -- the parameters passedairdata fields but addresses, as a rule
reASMgen cannot deal with this correctly due to the mudtidl dereferencing. In the example

this works because REG6 and REG?7 function as DStGisters in the assembler program:
USING DS1,6
USING DS2,7

5 Flow of Control

5.1 The Uniqueness of Flow of Control

A more precise discussion of this problem can lb@dan thereASM handbook.reASM
already contains all heuristics to determine the/ fbf control to the uniqueness required. For

example with the construct
L REG6,=A(PRINT)

BALR REG14,REG6
through flow of control the content of registers&dietermined and -- if a unique content can be

determined -- transformed into the PL/1 code
DCL 01 REG6_PRINT _ix POINTER ;

REG6_DRUCK_ix = ADDR(PRINT) ;

CALL PRINT;
The assignment of the address of PRINT is alsorgést; although in the 3GL this no longer
makes sense. This is due to the fact that datadldwestablishes a directed connection of the
BALR statement to the L statement, but not the rotveey around. The BALR statement "knows"
that the content of REG6 can only be the addre®ReNT. The L statement doast "know"
that the content of REG6 will only be used by th_B statement and not later. Thus the L
statement must be transformed. In PL/1 this ikt of the language, in COBOL no longer.
In any case those situations in whrdASMgen generates the data type POINTER must be
checked manually. It can be a case of explicitegking that could not be interpreted and must
be corrected manually, or -- as here -- alreadsectly interpreted register usage, such that
REG6_PRINT _ix can be deleted.

As you can see, many of the heuristicedASMgen are based omvestigation of data flow.

Not only are these expensive in terms of time baspecially in assembler -- their utility can be
heavily impacted by unclear source code, in pderdirough flow of control anomalies (see
reASM handbook). As a rule these should be removed fhensburce code before starting a
reASMgen transformation.

5.2 Dynamic Code Modification

As already discussed in theASM handbook, all places where code is modified @deatified
and -- to the extent possible -- re-interpretedvaitches. While imeASM the emphasis is on

identification and possible flow of control, iBASMgen generation as switches is important:
VTO090 NOP VERTRX
Ol VT090+1,X'FO

becomes in PL/1

VT090:
IF switchVT090 = 1 THEN GOTO VERTRX;
switchVT090 = 1;

and in COBOL

VT090.

IF switchVT090 = 1 THEN GO TO VERTRX
END-IF .
MOVE 1 TO switchVT090.

5.3 Restructuring Flow of Control

reASMgen deliberately attemptso automatic restructuring of flow of control. Thus the initial
result of transformation is 3GL code in which tleerespondence between 3GL statement and
assembler statement is easy to establish. Thgpisrtant for manual control.

Once (perhaps after repeated corrections to tlesrder source code) this 1:1 code is
satisfactory, the restructuring modulereASMgen can be used to allow restructuring of
selected code sequences. You will find a discassigestructuring in theeASM handbook.
reASMgen uses the same restructuring, except that instepseoadocode PL/1 or COBOLS5 is
generated.

A much more important form of restructuring is theision of code into procedures. But this has
little to do with the transformation of assemblaoithe 3GL. This form of restructuring bridges
the distance between the "early”, unstructured, Bdigramming style and the "late", mature,
3GL style. For this purpose a corresponding 3Qil sbould be used (although one must add
that the tools available for this are everything datisfactory).

6 The Adaptability of the Transformation
6.1 Macros

Assembler macros are declared -- just aefiSM -- in the file MACRO.ARI. Now in addition,
the 3GL code to be generated can be specifiedexede

It is not necessary to declare all macros but mgarison withreASM more macros must be
declared. This is particularly true of macros thetta register. SinaeASMgen investigates the
complete data flow of the registers and uses thabtain type information, the lack of
information about the setting of a register hasgneconsequences than WitASM .

6.2 The Reference File

The reference file can influence the analysis/gatier of individual statements. For this a

reference number can be entered in the assemblerescode or listing in the comment area. In

the reference file an entry is made indicating le@aeh reference number is to be interpreted.

With the reference file you can for example

 introduce assembler statements to e.g. make thewte of an input buffer known through
redefinition

* resolve ambiguities in the interpretation of annectly addressed variable

» declare tables

» deal with procedures with multiple entry points

» suppress the generation of a line or specify géoeraf text

A precise description can be found in the file REE-.

6.3 The generated Syntax

One of the design principles ddASMgen was that the differences between COBOL, PL/1, and
other 3GL languages (the language C would haveeaapole here) have as little influence on
the transformation process as possible. With fegeptions it was possible to defer the
distinction between generating COBOL or PL/1 utité last step of the transformation process in
which the internal metacode is turned into COBOPbf1 syntax. This step is in the file
GEN.ARI and can be completely adapted, e.g. torggmether COBOL or PL/1 dialects, or
instead of the COBOL85 STRING statements to geaa@inpany-specific subprogram calls for
character string processing.
Experience with Prolog is required to adapt the BEN.ARI.
Outside of the file GEN.ARI the difference betw&@@BOL and PL/1 affects the following
places (not adaptable):
« ordering data declarations, particularly redefoms
» dealing with DSECTs
 if in an assignment the target variable would have to be a substring of a declared
variable (common in PL/1, not in COBOL)
« if anindirectly addressed variable cannot be interpreted as table or string, in PL/1 a
based pointer can be generated, not in COBOL

